Что делает сервер программа

Что делает сервер программа

Се́рверное програ́ммное обеспечение (се́рвер, англ. server от to serve — служить; множественное число се́рверы, в разговорном языке также употребляется сервера́) — в информационных технологиях — программный компонент вычислительной системы, выполняющий сервисные (обслуживающие) функции по запросу клиента, предоставляя ему доступ к определённым ресурсам или услугам.

Содержание

Роль сервера [ править | править код ]

Понятия сервер и клиент и закреплённые за ними роли образуют программную концепцию «клиент-сервер».

Для взаимодействия с клиентом (или клиентами, если поддерживается одновременная работа с несколькими клиентами) сервер выделяет необходимые ресурсы межпроцессного взаимодействия (разделяемая память, пайп, сокет и т. п.) и ожидает запросы на открытие соединения (или, собственно, запросы на предоставляемый сервис). В зависимости от типа такого ресурса, сервер может обслуживать процессы в пределах одной компьютерной системы или процессы на других машинах через каналы передачи данных (например, COM-порт) или сетевые соединения.

Формат запросов клиента и ответов сервера определяется протоколом. Спецификации открытых протоколов описываются открытыми стандартами, например, протоколы Интернета определяются в документах RFC.

В зависимости от выполняемых задач одни серверы, при отсутствии запросов на обслуживание, могут простаивать в ожидании. Другие могут выполнять какую-то работу (например, работу по сбору информации), у таких серверов работа с клиентами может быть второстепенной задачей.

Аппаратное обеспечение [ править | править код ]

У слова «сервер» есть и другое значение — компьютер, выполняющий серверные задачи, или компьютер (или иное аппаратное обеспечение), специализированный (по форм-фактору и/или ресурсам) для использования в качестве аппаратной базы для серверов услуг (иногда — услуг определённого направления), разделяя ресурсы компьютера с программами, запускаемыми пользователем. Такой режим работы называется «невыделенным», в отличие от «выделенного» (англ. dedicated ), когда компьютер выполняет только сервисные функции. Строго говоря, на рабочей станции (для примера, под управлением Windows XP) и без того всегда работает несколько серверов — сервер удалённого доступа (терминальный сервер), сервер удалённого доступа к файловой системе и системе печати и прочие удалённые и внутренние серверы.

Классификация стандартных серверов [ править | править код ]

Как правило, каждый сервер обслуживает один или несколько схожих протоколов. Серверы можно классифицировать по типу услуг, которые они предоставляют. [1]

Универсальные серверы [ править | править код ]

Универсальные серверы — особый вид серверной программы, не предоставляющий никаких услуг самостоятельно. Вместо этого универсальные серверы предоставляют серверам услуг упрощённый интерфейс к ресурсам межпроцессного взаимодействия и/или унифицированный доступ клиентов к различным услугам. Существуют несколько видов таких серверов:

  • inetd (от англ.internet super-server daemon — демон сервисов IP) — стандартное средство UNIX-систем — программа, позволяющая писать серверы TCP/IP (и сетевых протоколов других семейств), работающие с клиентом через перенаправленные inetd потоки стандартного ввода и вывода (stdin и stdout).
  • RPC (от англ.Remote Procedure Call — удалённый вызов процедур) — система интеграции серверов в виде процедур, доступных для вызова удалённым пользователем через унифицированный интерфейс. Интерфейс, изобретённый Sun Microsystems для своей операционной системы (SunOS, Solaris; Unix-система), в настоящее время используется как в большинстве Unix-систем, так и в Windows.
  • Прикладные клиент-серверные технологии Windows:
  • (D-)COM (англ. (Distributed) Component Object Model — модель составных объектов) и др. — Позволяет одним программам выполнять операции над объектами данных, используя процедуры других программ. Изначально данная технология предназначена для их «внедрения и связывания объектов» (OLE англ.Object Linking and Embedding ), но в общем позволяет писать широкий спектр различных прикладных серверов. COM работает только в пределах одного компьютера, DCOM доступна удалённо через RPC.
  • Active-X — Расширение COM и DCOM для создания мультимедийных приложений.

Универсальные серверы часто используются для написания всевозможных информационных серверов — серверов, не нуждающихся в специфической работе с сетью и не имеющих никаких задач, кроме обслуживания клиентов. Например, в роли серверов для inetd могут выступать обычные консольные программы и скрипты.

Большинство внутренних и сетевых специфических серверов Windows работают через универсальные серверы (RPC, (D-)COM).

Маршрутизация [ править | править код ]

Строго говоря, сервер маршрутизации не является сервером в классическом смысле, а является базовой функцией поддержки сети операционной системой.

Для TCP/IP маршрутизация является базовой функцией стека IP (кода поддержки TCP/IP). Маршрутизацию своих пакетов к месту назначения выполняет любая система в сети, маршрутизацию же чужих пакетов (форвардинг) выполняют только маршрутизаторы (также известные как роутеры или шлюзы). Задачи маршрутизатора при форвардинге пакета:

  • принять пакет
  • найти машину, на которую следует этот пакет, или следующий маршрутизатор по маршруту к ней (в таблице маршрутов)
  • передать пакет или вернуть ICMP-сообщение о невозможности его доставки по причинам:
  • назначение недостижимо (англ. Destination unreachable ) — у пакета кончилось «время жизни» прежде чем он достиг места назначения
  • хост недостижим ( Host unreachable ) — компьютер или следующий маршрутизатор выключен или не существует
  • сеть недостижима ( Network unreachable ) — маршрутизатор не имеет маршрута в сеть назначения
  • если пакет не может быть доставлен по причине перегрузки маршрутизатора (или сети) — отбросить пакет без уведомлений
  • Динамическая маршрутизация [ править | править код ]

    Решения динамической маршрутизации призваны собирать информацию о текущем состоянии сложной сети и поддерживать таблицу маршрутов через эту сеть, чтобы обеспечить доставку пакета по кратчайшему и самому эффективному маршруту.

    Из этих решений клиент-серверную модель использует только BGP (англ. Border Gateway Protocol — протокол пограничного шлюза), применяемый для глобальной маршрутизации. Локальные решения (RIP OSPF) используют в своей работе бродкастовые и мультикастовые рассылки.

    Сетевые службы [ править | править код ]

    Сетевые службы обеспечивают функционирование сети; например, серверы DHCP и BOOTP обеспечивают стартовую инициализацию серверов и рабочих станций, DNS — трансляцию имён в адреса и наоборот.

    Серверы туннелирования (например, различные VPN-серверы) и прокси-серверы обеспечивают связь с сетью, недоступной роутингом.

    Серверы AAA и Radius обеспечивают в сети единую аутентификацию, авторизацию и ведение логов доступа.

    Информационные службы [ править | править код ]

    К информационным службам можно отнести как простейшие серверы, сообщающие информацию о хосте (time, daytime, motd) и пользователях (finger, ident), так и серверы для мониторинга, например SNMP. Большинство информационных служб работают через универсальные серверы.

    Особым видом информационных служб являются серверы синхронизации времени — NTP. Кроме информирования клиента о точном времени NTP-сервер периодически опрашивает несколько других серверов на предмет коррекции собственного времени. Помимо времени, анализируется и корректируется скорость хода системных часов. Коррекция времени осуществляется ускорением или замедлением хода системных часов (в зависимости от направления коррекции), чтобы избежать проблем, возможных при простой перестановке времени.

    Файловые серверы [ править | править код ]

    Файловые серверы представляют собой серверы для обеспечения доступа к файлам на диске сервера.

    Прежде всего это серверы передачи файлов по заказу, по протоколам FTP, TFTP, SFTP и HTTP. Протокол HTTP ориентирован на передачу текстовых файлов, но серверы могут отдавать в качестве запрошенных файлов и произвольные данные, например динамически созданные веб-страницы, картинки, музыку и т. п.

    Другие серверы позволяют монтировать дисковые разделы сервера в дисковое пространство клиента и полноценно работать с файлами на них. Это позволяют серверы протоколов NFS и SMB. Серверы NFS и SMB работают через интерфейс RPC.

    Недостатки файл-серверной системы:

    • Очень большая нагрузка на сеть, повышенные требования к пропускной способности. На практике это делает практически невозможной одновременную работу большого числа пользователей с большими объёмами данных.
    • Обработка данных осуществляется на компьютере пользователя. Это влечёт повышенные требования к аппаратному обеспечению каждого пользователя. Чем больше пользователей, тем больше денег придётся потратить на оснащение их компьютеров.
    • Блокировка данных при редактировании одним пользователем делает невозможной работу с этими данными других пользователей.
    • Безопасность. Для обеспечения возможности работы с такой системой Вам будет необходимо дать каждому пользователю полный доступ к целому файлу, в котором его может интересовать только одно поле.

    Серверы доступа к данным [ править | править код ]

    Серверы доступа к данным обслуживают базу данных и отдают данные по запросам. Один из самых простых сервисов подобного типа — LDAP (англ. Lightweight Directory Access Protocol — облегчённый протокол доступа к спискам).

    Для доступа к серверам баз данных единого протокола не существует, однако ряд баз данных объединяет использование единых правил формирования запросов — языка SQL (англ. Structured Query Language — язык структурированных запросов). Наряду с ними есть и другие — NoSQL базы данных.

    Медиасерверы [ править | править код ]

    Медиасерверы предоставляют сети доступ к мультимедийным источникам, от аудио/видео по запросу (что приближает медиасерверы к файл-серверам) до стриминга аудио/видео в реальном времени.

    Читайте также:  Требование к созданию рисунку в фотошопе

    VoIP / IP-телефония [ править | править код ]

    Серверы IP-телефонии (VoIP) — программные коммутаторы (софтсвитчи), IP-АТС, виртуальные АТС и серверы ВКС, а также специализированные серверы Интернет-сервисов (таких как Skype) обеспечивают пользователей возможностями голосовой и видео-связи в режиме реального времени посредством компьютерной сети. Кроме собственно передачи потоковых медиа-данных (аудио и видео), сервер IP-телефонии подобно классической АТС реализует возможность регистрации оконечного терминала, маршрутизацию вызова и корректное установление соединения между пользователями, а также нередко и дополнительные виды обслуживания.

    В отдельных случаях, в зависимости от реализуемой технологии и административных настроек, VoIP-сервер может обеспечивать только управление — регистрацию пользователя в сети и коммутацию поступающих вызовов, без непосредственного участия в передаче медиа-данных между кклиентскими терминалами. В этом случае потоковые данные с полезной нагрузкой передаются напрямую между конечными пользователями (peer-to-peer) и / или некоторыми промежуточными устройствами, приложениями. Известно, что такой вариант прямой связи с управлением через сервер применяется в Skype, Viber, Telegramm и WhatssApp. Также, подобный режим нередко применяется в корпоративных IP-АТС.

    В качестве клиентских терминалов к VoIP-серверу могут выступать VoIP-телефоны, видеотелефоны, программные телефоны (софтфоны), а также обычные аналоговые телефонные аппараты подключенные через VoIP-шлюз. Сервер IP-телефонии может работать как самостоятельное устройство для обеспечения связи между внутренними пользователями или быть подключенным к какой-либо сторонней сети, в том числе к телефонной сети общего пользования, через Интернет или через сеть оператора телефонной связи.

    Службы обмена сообщениями [ править | править код ]

    Службы обмена сообщениями позволяют пользователю передавать и получать сообщения (обычно — текстовые).

    В первую очередь это серверы электронной почты, работающие по протоколу SMTP. SMTP-сервер принимает сообщение и доставляет его в локальный почтовый ящик пользователя или на другой SMTP-сервер (сервер назначения или промежуточный). На многопользовательских компьютерах пользователи работают с почтой прямо на терминале (или в веб-интерфейсе). Для работы с почтой на персональном компьютере почта забирается из почтового ящика через серверы, работающие по протоколам POP3 или IMAP.

    Для организации конференций существует серверы новостей, работающие по протоколу NNTP.

    Для обмена сообщениями в реальном времени существуют серверы чатов. Существует большое количество чат-протоколов, например, IRC, Jabber и OSCAR.

    Серверы удалённого доступа [ править | править код ]

    Серверы удалённого доступа, через соответствующую клиентскую программу, обеспечивают пользователя аналогом локального терминала (текстового или графического) для работы на удаленной системе.

    Для обеспечения доступа к командной строке служат серверы telnet, RSH и SSH.

    Графический интерфейс для Unix-систем — X Window System — имеет встроенный сервер удалённого доступа, так как с такой возможностью разрабатывался изначально. Иногда возможность удалённого доступа к интерфейсу Х-Window неправильно называют «X-Server» (этим термином в X-Window называется видеодрайвер).

    Стандартный сервер удалённого доступа к графическому интерфейсу Microsoft Windows называется терминальный сервер.

    Некоторую разновидность управления (точнее, мониторинга и конфигурирования) также предоставляет протокол SNMP. Компьютер или аппаратное устройство для этого должно иметь SNMP-сервер.

    Серверы приложений [ править | править код ]

    Серверы предоставляющие сети прикладные сервисы (в том числе — вычислительные).

    Игровые серверы [ править | править код ]

    Игровые серверы служат для одновременной игры нескольких пользователей в единой игровой ситуации. Некоторые игры имеют сервер в основной поставке и позволяют запускать его в невыделенном режиме (то есть позволяют играть на машине, на которой запущен сервер).

    Прочие серверы [ править | править код ]

    Принт-серверы позволяют пользователям сети совместно использовать общий принтер.

    Факс-сервер позволяет пользователям сети отправлять факсимильные сообщения.

    Серверные решения [ править | править код ]

    Серверные решения — операционные системы и/или пакеты программ, оптимизированные под выполнение компьютером функций сервера и/или содержащие в своем составе комплект программ для реализации типичного набора сервисов.

    В качестве примера серверных решений можно привести Unix-системы, изначально предназначенные для реализации серверной инфраструктуры.

    Также необходимо выделить пакеты серверов и сопутствующих программ (например комплект веб-сервер/PHP/MySQL для быстрого развёртывания хостинга) для установки под Windows (для Unix свойственна модульная или «пакетная» установка каждого компонента, поэтому такие решения редки [ источник не указан 2510 дней ] , но они существуют. Наиболее известное — LAMP).

    В интегрированных серверных решениях установка всех компонентов выполняется единовременно, все компоненты в той или иной мере тесно интегрированы и предварительно настроены друг на друга. Однако в этом случае замена одного из серверов или вторичных приложений (если их возможности не удовлетворяют потребностям) может представлять проблему.

    Серверные решения служат для упрощения организации базовой ИТ-инфраструктуры компаний, то есть для оперативного построения полноценной сети в компании, в том числе и «с нуля». Компоновка отдельных серверных приложений в решение подразумевает, что решение предназначено для выполнения большинства типичных задач; при этом значительно снижается сложность развёртывания и общая стоимость владения ИТ-инфраструктурой, построенной на таких решениях.

    1. ↑ Comer, Douglas E.; Stevens, David L. (1993). Vol III: Client-Server Programming and Applications. Internetworking with TCP/IP. Department of Computer Sciences, Purdue University, West Lafayette, IN 479: Prentice Hall. pp. 11d. ISBN 0-13-474222-2.

    Что такое сервер? Серверный компьютер и серверное приложение

    • 28.07.2016
    • Вопрос-ответ, Сервера и протоколы, Что такое?
    • Комментариев нет

    Привет, посетитель сайта ZametkiNaPolyah.ru! Продолжаем рубрику Сервера и протоколы. А также рубрику Вопрос-ответ, в которой у нас есть раздел «Что такое?». В этой записи мы разберемся со значением термина сервер и поговорим о том, что такое серверный компьютер и что такое серверное приложение. Сначала мы разберемся откуда появилось слово сервер, а затем разберемся для чего нужны серверные машины и почему некоторые программы называют серверными приложениями и в чем их отличие от обычных приложений.

    Что такое сервер? Серверный компьютер и серверное приложение

    Общее определение термина сервер

    Итак, давайте разберемся с вопросом: что такое сервер? Но для начала немного исторической справки. Сервер – это имя. Перевод имени Сервер с персидского – глава, предводитель, вождь. Собственно, нам такое определение подходит для дальнейшего разговора. Если говорить конкретно про компьютерную тематику и отрасль IT, то термин сервер имеет два значения:

    1. Сервер – программное обеспечение, принимающее и обрабатывающее запросы клиентов с целью оказания тех или иных услуг.
    2. Сервер – это аппаратный комплекс, имеющий большие вычислительные мощности. Обычно сервер собирают под какие-либо конкретные сервисные функции. Например, сервер баз данных или файловый сервер.

    Если говорить в контексте веб-разработки, то хостинг, на котором мы размещаем сайты – это сервер, который включает в себя как программную часть, так и аппаратную часть.

    Серверный компьютер

    Если мы говорим про аппаратную часть, то сервер – это специализированный компьютер или же специальное оборудование, которое используется для выполнения каких-либо узкоспециализированных функций, требующих больших вычислительных мощностей. Выполнение узкоспециализированных функций сервера обусловлено использованием специального серверного программного обеспечения.

    Иногда вместо термина сервер вы можете услышать словосочетание выделенный компьютер, опять же, это потому, что функции сервера в компьютерной сети отличаются от функций других машин. В лучшем случае человек работает с серверной машиной только один раз – когда настраивает сервер, далее работа серверного компьютера (опять же, в идеальном случае) происходит автономно без вмешательства человека.

    У нас сейчас не стоит цель детально погружаться в масштабируемость и сборку серверных компьютеров, и уж тем более сейчас не стоит цель давать рекомендации по сборке серверных машин различного назначения, так как это довольно специфичная и довольно узкая тематика. Сейчас нам нужно понимать, что сервер – это специально выделенный компьютер для каких-то определённых функций (хотя это не всегда так), зачастую при недостатке бюджета сервер может выполнять сразу несколько функций.

    Также стоит заметить, что обычно управление сервером осуществляют не рядовые пользователи, а специально обученные и подготовленные системные администраторы, в задачу которых входит обслуживание серверных компьютеров.

    Серверное приложение

    Серверное приложение – это специализированная программа, которая принимает запросы клиентов, обрабатывает их и дает ответы на эти вопросы. Для того чтобы лучше понять, что такое серверное приложение, вам нужно понимать, что модель взаимодействия клиент-сервер предназначена для того, чтобы разделить нагрузку и функционал между клиентскими приложениями и серверными, поэтому приложение клиент и серверное приложение могут работать на одном компьютере и при этом взаимодействовать друг с другом.

    В качестве примеров серверных приложений можно привести:

    • любой HTTP сервер, например, сервер Apache или lighttpd;
    • сервер баз данных MySQL;
    • готовые сборки для веб-разработчика, такие как Denwer или локальный сервер AMPPS.
    Читайте также:  Аниме картинки на аву глаза

    Серверное приложение выполняет определённый набор функций, который ограничен его назначением. Например, веб-сервер должен принимать HTTP запросы от клиента, анализировать их, проверяя полученные HTTP методы и поля заголовков, затем выполнять действия, указанные в запросе и отчитываться клиенту о результатах своей работы при помощи специального HTTP сообщения, которое получило название ответ.

    А, например, серверное приложение MySQL должно анализировать SQL запрос, полученный от клиента, обработать его, организовать доступ к файловой системе и вернуть результат запроса клиенту.

    Но, помимо того, что у серверного приложения есть определённая роль или функция, нам стоит отметить то, что взаимодействие между клиентской программой и серверным приложением происходит по сетевому протоколу (даже если оба приложения установлены на один компьютер, например, по протоколу HTTP). Сейчас мы не будем давать полную классификацию серверных приложений и не будем вдаваться в специфику тех или иных приложений. Нам важно понимать, что серверные приложения выполняют строго определённую роль и в архитектуре клиент-сервер являются поставщиками услуг для клиентов.

    В предыдущей статье были рассмотрены возможности двух серверных платформ для терминальных решений. Но на рынке произошли изменения: появился новый сервер от Microsoft — "MS Windows 2000 Advanced Server", практически полностью уничтожающий различия между продуктами Microsoft и Citrix. Новый сервер обладает такими возможностями, как:

    • Служба кластеризации и перераспределения нагрузки
    • Поддержка протокола RDP5
    • Поддержка доступа к серверу при помощи браузера IE (компонент ACTIVE X)
    • Доступ к серверу печати, COM-портам и буферу обмена клиента.

    Также стоит отметить появление на рынке продукта от компании Corel, который, к сожалению, в продажу на территории России не поступал и пока никакого независимого тестирования не проходил.

    Основные задачи, которые выполняет сервер приложений — выполнение задач клиента и отправка изменившегося окна клиента. Здесь имеет смысл отметить два момента.

    Во-первых, с какой скоростью сервер будет выполнять задачи — если скорость соединения высока, то именно от скорости выполнения задач будет зависеть общая производительность системы.

    Второй показатель — скорость доставки обновленного экрана клиента. Здесь тоже имеет смысл обратить внимание на то, что даже если сервер у Вас фантастически быстр, то на повышение производительности будет влиять скорость соединения сервера с клиентом.

    То есть оптимум в построении терминальных систем, как и малого, так и большого масштаба зависит, прежде всего, не от запросов пользователей, а от технических возможностей, которые вы сможете предоставить и того баланса между скоростью сервера и скоростью соединения, которого вы сможете достигнуть. Эта проблема прежде всего экономическая, так как описанный выше баланс — выбор между более скоростным соединением с клиентом и более быстрым и, следовательно, более дорогим сервером.

    Также следует обратить внимание на тот уровень комфорта при работе с терминалом, который готовы воспринять пользователи. Так, к примеру, машинистке набивающей платежки в банке не надо мгновенно видеть результаты своей работы на экране — пауза в 0.1 секунду ее может вполне устроить. Также пользователя может вполне устроить 16 цветов при запуске приложения вместо 256. Проще говоря, перед тем как построить любую терминальную систему, вам требуется ознакомиться с техническими возможностями предприятия, запросами пользователей и теми бизнес-задачами, которые будут выполняться на сервере.

    Выбор сервера приложений

    Основной задачей при выборе сервера приложений является оптимизация мощности процессора и объема оперативной памяти. Основная проблема состоит в том, чтобы подсчитать нужные ресурсы для большой группы пользователей, имея мало представления о них и о том, как они могут загрузить сервер. То есть вы наверняка можете предположить, что одна секретарша использует немного ресурсов, но что произойдет, когда таких пользователей будет подключено к серверу более 50?

    Во-первых, данные пользователи постоянно не используют предоставленные им вычислительные ресурсы, во-вторых, даже в их работе существуют серьезные всплески активности — к примеру, загрузка Word. Также надо предполагать, что существуют другие пользователи, возможно имеющие другие параметры по загрузке сервера — к примеру, программисты.

    На данном этапе вам, возможно впервые, придется провести анализ "поведения" пользователей, которых вы собираетесь подключить к терминальному серверу.

    Пример

    Общее количество рабочих мест — 20. 10 пользователей используют только Microsoft Word, Excel, Outlook, IE (отдел продаж, маркетинга и PR), 3 пользователя используют только 1C (бухгалтерия), 4 пользователя используют IE, Outlook (начальники отделов), 2 пользователя очень редко используют Word и, наконец, остается системный администратор, загружающий все подряд от PhotoShop до J++.

    Предположим, что внутри пользовательских групп нагрузка распределяется равномерно (обед у всех в одно и тоже время), также предположим, что те программные средства, которые используют пользователи, в целом равномерно загружают сервер (проще говоря, печатанье в Ворде не порождает всплеска использование процессора).

    Итак, вы каким-либо способом рассматриваете то, как пользователь использует компьютер в рабочий день. То есть смотрите за тем, какие действия он за ним производит. Данный контроль можно осуществлять двумя способами, во-первых, запустить какого-нибудь робота, что бы он записывал нажатия на клавиши и щелчки мышью, во-вторых, вы можете подключить пользователя к какому-либо свободному терминальному серверу и посмотреть какую нагрузку он будет производить в течение дня. Далее результаты работы робота можно воспроизвести уже на терминальном сервере и найти уровень загруженности системы.

    Какие параметры вы должны получить:

    1. Пиковая нагрузка на процессор. Частота пиковой нагрузки на процессор за день. Средняя продолжительность такой нагрузки.
    2. Средняя загрузка процессора за день. Желательно также найти почасовую среднюю нагрузку.
    3. Пиковое использование памяти. Частота пиковой нагрузки за день. Средняя продолжительность такой нагрузки.
    4. Среднее использование памяти в течение дня, почасовая средняя нагрузка.

    Вы должны провести такое испытание со всеми группами пользователей.

    Далее вы легко можете получить так называемые "минимальные" показатели сервера приложений — помножьте средние показатели на количество пользователей в группе и сложите все группы. вы получите просто фантастические запросы к памяти — для нашего примера: около 780 Мбайт оперативной памяти и около 2 ГГц суммарной занятости процессора.

    Но не стоит пугаться — метод, описанный выше неправилен :), так как терминальный сервер умеет эффективно использовать память.

    К примеру, общий объем загружаемых компонентов Microsoft Word в памяти около 9 Мбайт, но 8 Мбайт из данного блока приходится на словари, графику и помощника. Когда будет запущена следующая копия Word, эти 8 Мбайт не будут загружены или продублированы — они будут доступны обеим копиям. Если какая-нибудь из них попробует изменить эту восьми мегабайтную часть, то измененная часть будет отделена и потребует немного памяти. Использование данного механизма распределения памяти позволяет экономить память. Но степень данной экономии вы сможете определить, только используя второго, подключенного к терминальному серверу клиенту. То есть вы подключаете второго клиента или запускаете записанную ранее роботом программу действий второй раз.

    Итак, вы смогли определить примерные размеры приложений при повторном запуске. Далее вы должны составить примерную временную таблицу загруженности данного приложения в память. К примеру: Word — 27% времени, Excel — 10% времени, IE — 100% времени. Далее вы умножаете то количество памяти, которое действительно требуется на количество пользователей использующих данное приложение и на полученную таблицу. Получившиеся "мегабайто-сапиенс" и есть то минимальное количество памяти, которое вам потребуется (для нашего примера — около 340 Мбайт).

    Процессорная мощность может быть вычислена и нормальным способом — вы можете просто сложить среднюю загруженность терминального сервера. Далее перевести эту загруженность в какие-либо масштабируемые единицы — к примеру, мегагерцы или показатели производительности какого либо теста процессора. Здесь стоит обратить внимание на то, что мегагерц — наихудший вариант, ибо 166MMX работает не 5 раз медленнее 800 МГц Athlon, но какой показатель наилучшим образом подходит для сравнения, к сожалению, сказать сложно.

    Таким образом, вы сможете получить показатель на уровне 500-600 МГц для нашего примера. Если же вы подсчитаете, насколько каждое отдельное приложение загружает сервер, и умножите данный результат на цифры из полученной ранее таблицы, то, возможно, получите меньший и более правдивый вариант.

    Далее нужно выяснить, как перегрузки влияют на сервер. Предположим, что существуют два вида перегрузок — утренние и обыкновенные. Под утренними понимается обыкновенная загрузка бездисковых станций, под обыкновенными — загрузка новых приложений.

    Читайте также:  Apple iphone 7 plus 128gb обзор

    вам должно быть известно количество таких моментов в течение рабочего дня и их распределение. Если таких перегрузок немного, то вы смело можете забыть про них, если же очень много то вам придется выделить дополнительные ресурсы памяти и процессора. К примеру, выяснилось, что обычная перегрузка происходит каждые 20 минут. При этом загрузка процессора возрастает на 200 МГц, плюс затрачивается в среднем около 10 Мбайт памяти. Продолжительность около 15 секунд. Практически именно данные показатели вы должны прибавить к минимальным. А вот утренняя перегрузка обладает другими качествами — предположим 20 перегрузок в течение 10 минут, длительностью около 20 секунд. вам тогда придется учитывать более сложную ситуацию — возникновение, скажем, двух перегрузок одновременно.

    Итак, в итоге вы получили показатели: процессорная мощность — около 600 мегагерц процессор, 400 мегабайт оперативной памяти. Далее вы должны выделить память для самой операционной системы и ее сервисов. К примеру, если вы собираетесь инсталлировать Windows 2000 Advanced Server, смело прибавляйте 128 Мбайт памяти и около 40 МГц для внутренних задач.

    Итог — 640 МГц на 512 Мбайт оперативной памяти.

    Данный алгоритм позволяет найти нужную именно вашей организации мощность сервера. Я специально не стал приводить результаты тестов, которые проводил самостоятельно, или опубликованные результаты от западных компаний, дабы вы самим могли оценить эффективность терминальных решений.

    Если вашим пользователям потребуется часто пользоваться жестким диском, рассмотрите возможность использования SCSI-контролера и SCSI-диска — это позволит разгрузить процессор, и уменьшить количество перегрузок.

    В любом случае, даже если у вашей организации много ресурсов для выполнения таких задач, не стоит скупать Xeon’ы и устанавливать гигабайты памяти — добавить второй процессор чаще оказывается намного проще, чем потратить безрезультатно пару тысяч долларов.

    После выбора

    Итак, вы купили нужный сервер, протестировали его и теперь перед вами стоят задачи конфигурирования и инсталляции программного обеспечения.

    Во-первых, вы должны выбрать, будете ли вы использовать продукты компании Citrix или остановитесь на продуктах от Microsoft. Более дорогой вариант — Metaframe, обладает несколькими не очень важными с моей точки зрения возможностями:

    • Program Neighborhood. Применение данного компонента практически бессмысленно, если количество пользователей менее 100, в любом случае вы сможете, используя стандартные средства администрирования, добиться той же эффективности
    • Video Frame — данный компонент позволяет нескольким операторам или скажем только вам наблюдать за работой клиентов и если надо вмешиваться в их работу.
    • Поддержка передачи звука
    • Поддержка IPX/SPX, и некоторых другие протоколы, включая соединение по нуль модемному кабелю.

    Наиболее важное отличие между данными терминальными серверами лежит в протоколе подключения клиентов. Microsoft использует для этого RDP 5.0, Citrix — ICA.

    Эти протоколы имеют собственные плюсы и минусы. К примеру, ICA — платформенно-независимый протокол, клиент может работать на любой платформе, будь он веб-браузером или старым добрым Lunix. Протокол от Microsoft работает только на 2 клиентах — WIN16 и WIN32, но это дает ему возможность использовать вызовы WINAPI, что резко сокращает размер и количество передаваемых пакетов. В итоге данный протокол чаше демонстрирует возможность комфортной работы на полосе 4-8 Кбайт в секунду, когда Citrix даже при установке SPEEDSCREEN2 (утилиты для сжатия потока ICA) не демонстрирует показатели лучше 10 килобайт в секунду.

    Как это может отразиться на работе вашего предприятия? Если вам придется подключать удаленное подразделение, то использование коммерческих линий часто оказывается очень дорогим удовольствием и сжатие потока будет очень важно. К примеру, для очень комфортного подключения одного клиента по RDP5.0 придется использовать два модема 33.6, а по ICA — в обязательном порядке выделенный канал.

    Второй фактор при покупке данных продуктов — возможность приобрести их на территории России. Если продукты Microsoft еще присутствуют, то продукты от компании Citrix вам придется поискать. Как дополнительный плюс надо отметить русифицированость продуктов Microsoft.

    Инсталляция

    Windows 2000 Advanced Server

    Инсталляция обычно проходит без особых проблем, единственное, что от Вас потребуется — это установить терминальные службы в качестве компонента. Далее никаких особенных настроек от Вас не понадобится, вам потребуется лишь лицензировать сервер на более чем 2 подключенных клиента и на этом настройка закончится.

    Citrix Metaframe 1.8

    Установка также не должна вызвать у Вас каких-либо проблем, никаких сложных настроек при установке указывать не надо.

    Но если у Вас возникли какие-либо проблемы с установкой какого-либо из этих продуктов, то вы легко сможете найти инструкции по установке на нескольких российских серверах.

    Настройка сервера после установки

    Здесь я приведу несколько советов по улучшению состояния серверов:

    1. Отключите сжатие потока, если ваши клиенты не обладают мощными процессорами. Это также должно снизить нагрузку на сервер.
    2. Не используйте сервер как прокси, веб-сервер, сервер баз данных. Для этих целей выделите другую рабочую станцию.
    3. Отключите или снизьте до 1-2 Мбайт кэширование битмэпов в случае использования бездисковых клиентов. Это разгрузит сеть и убыстрит работу.
    4. Уменьшите до 640х480 точек и 16 цветов размер клиентского десктопа. Это резко снизит нагрузку на сеть и даст еще немного ресурсов серверу.
    5. Отключите любые скрин-сейверы на стороне клиента, или, проще говоря, не инсталлируйте их.
    6. Попытайтесь избавиться от любых DOS-компонентов или любых компонентов, активно использующих графику.
    7. Отключите всевозможные видеоэффекты, заставки, фоны рабочего стола и тому подобные прелести.
    8. Отключите шифрование, так как оно примерно на 5 процентов снижает скорость работы клиента.
    9. Попробуйте отделить сегмент сети, в которой работает ваш сервер приложений и клиенты, это снизит нагрузку на сеть.
    10. Увеличьте кэш битмапов до максимума, в случае использования дисковых клиентов. Это резко увеличит скорость обновления экрана.
    11. Запретите пользователям использовать какие либо другие средства, кроме регламентированных (обязательно выключите пинбол при установке сервера, так как данное приложение готово загрузить все предлагаемые ему мощности ;))

    Данные советы, надеюсь, помогут высвободить определенные ресурсы, как сети, так и сервера приложений. Но существуют ситуации, когда требуется добиться еще большего результата в использовании сети — к примеру, получить возможность работы на 2-3 килобайтной полосе.

    Такие ситуации, к сожалению, не редкость, если организация обладает разветвленной сетью географически удаленных терминалов и не обладает ресурсами, чтобы использовать дорогие каналы. С момента выхода первой статьи мне пришло 3 письма с вопросами о построении именно таких сетей.

    Основной вопрос в таких сетях: как отразится резкое снижение полосы пропускания на качестве работы.

    Я использовал специальное программное обеспечение, чтобы уменьшить возможности моей сетевой карты и оценить, как резкое сокращение возможностей канала сказывается на работе.

    Задержка при передаче данных была принудительно установлена в 0.25 секунды (я думаю, что большие задержки даже в России получить сложно). Все битмапы были предварительно кэшированы. Использовался RDP 5.0.

    Канал 8 Кбайт в секунду

    Пауза чувствуется при открытии любого окна, складывается ощущение, что при нажатии на кнопку только через секунду на экране показывается диалоговое окно. При печати текста возникает ощущение наличия в клавиатуре огромного буфера — символов этак на 30. Очень долго происходит соединение с сервером: экран авторизации появляется только через 15 секунд.

    Канал 6 Кбайт в секунду

    Резко возрастает время появления диалогов, даже при повторном запросе. Пауза между выводом символа в Word и нажатием кнопки около секунды. Но нормальная работа еще возможна.

    Канал 4 Кбайта в секунду

    Я ожидал открытие экрана авторизации около минуты. Технически работать еще можно, но ни скроллинг, ни любой вывод графики уже невозможен. При попытке нажатия на кнопку "Пуск" приходится ждать около 2 секунд. Данный режим подходит только для специализированных приложений.

    Канал 2 Кбайта в секунду

    Я просто не дождался открытия окна авторизации.

    Технически данная информация может помочь вам в принятии решения о подключении удаленного терминала. Если терминал используется для работы операционистки, то миграция с DOS на такую систему не прибавит комфорта (привычного для Windows), но и не понизит качества работы.

    Если вы собираетесь устанавливать сервер именно для такого рода клиентов, то вам стоит задуматься о снижении расходов на него. Так как клиент все равно не сможет мгновенно получать информацию, то и не требуется мгновенное исполнение задач.

    Если вам требуется консультация по установке терминальных серверов или построении корпоративных систем управления на их основе, то пишите мне по почте.

    Ссылка на основную публикацию
    Adblock detector