Форм фактор блока питания что это

Форм фактор блока питания что это

Приветствую, дорогие читатели! В одной из предыдущих публикаций про основные характеристики БП мною, вскользь, упомянута тема про форм фактор блока питания для компьютера. В сегодняшнем гайде я расскажу об этом более детально.

p, blockquote 1,0,0,0,0 —>

Что это такое

Форм-фактором называется форма, размеры и физическая компоновка того или иного девайса для ПК. Все параметры стандартизированы, поэтому устройства одного форм фактора в большинстве случаев являются взаимозаменяемыми.

p, blockquote 2,0,0,0,0 —>

Конечно, следует обращать внимание и на другие параметры – в случае с БП это мощность, разъемы блока питания ПК (информацию по ним вы найдете здесь) и прочее.

p, blockquote 3,0,0,0,0 —>

Однако использование соответствующего форм-фактора(стандарта) гарантирует, что устройство поместится в корпусе чисто физически и не потребуется дополнительная «доводка напильником».

p, blockquote 4,0,0,0,0 —>

Преимущества для пользователей очевидны: типизация и стандартизация комплектующих позволяет быстро и недорого заменить деталь на аналогичную, приложив при этом минимум усилий.

p, blockquote 5,0,0,0,0 —>

Кроме того, на базе стандартных комплектующих можно так же быстро собрать новый компьютер требуемой конфигурации, а при возникновении необходимости улучшить характеристики, благодаря установке более мощного устройства.

p, blockquote 6,0,0,0,0 —>

Кроме того, совместимость стандартов обеспечивает более широкий выбор комплектующих и как следствие их большую доступность в плане цены, благодаря конкуренции между производителями.

p, blockquote 7,0,1,0,0 —>

Впервые о стандартизации задумались инженеры компании IBM, первопроходца во многих сферах, так или иначе связанных с компьютерами. На тот момент принято было три стандарта: PC/XT, AT и PS/2 Model 30. Почти у всех современных форм-факторов, какие существуют сегодня, «растут ноги» именно отсюда.

p, blockquote 8,0,0,0,0 —>

Современные типоразмеры

Принципиальная схема у всех БП аналогична, но вот конструкция может иметь определенные отличия. Рассмотрим более детально типы и виды современных стандартов, которые можно найти на рынке.

p, blockquote 9,0,0,0,0 —>

Этот вид представила компания Intel в 1995 году как замену теряющему актуальность AT. БП старого образца уже не хватало мощности, чтобы обеспечить энергией новые прожорливые компьютеры.

p, blockquote 10,0,0,0,0 —>

Такой БП имеет основной 20 или 24-пиновый коннектор для подключения материнки и 4‑пиновый коннектор для подключения питания +12 В, подающегося на процессор. Может использоваться с материнскими платами ATX, microATX, BTX и microBTX.

p, blockquote 11,0,0,0,0 —>

Сегодня этот вид является самым распространенным, поэтому при выборе комплектующих для сборки системного блока рекомендую ориентироваться именно на него. Для игрового компьютера следует использовать ATX версии 2.3.

p, blockquote 12,0,0,0,0 —>

Еще одно детище Intel, которое представлено в 1997 году. По сравнению с предыдущим вариантом, отличается уменьшенными габаритами, что позволяет собрать миниатюрный системный блок, подобрав соответствующие комплектующие.

p, blockquote 13,0,0,0,0 —>

Коннекторы для питания материнки и процессора такие же, как в предыдущем случае. Подходит для mini-ITX (имею в виду стандарты материнских плат), ATX, FlexATX, microBTX, picoBTX, DTX.

p, blockquote 14,1,0,0,0 —>

При покупке такого блока следует убедиться, что он физически подойдет по габаритам к корпусу, а также имеет все необходимые коннекторы для подключения дополнительных устройств.

p, blockquote 15,0,0,0,0 —>

В 1998 несколько крупных производителей комплектующих создали отраслевую группу SSI, на которую возложили задачу разработки и продвижения отраслевых форм-факторов. В результате создана спецификация EPS – типоразмер БП для сервера начального уровня.

p, blockquote 16,0,0,0,0 —>

Такой БП имеет 24-пиновый коннектор для питания материнской платы и 8‑пиновый коннектор для подключения процессора. Совместим с материнскими платами ATX и Extended ATX. От обычных блоков такие отличаются большей мощностью.

Читайте также:  Стоковая векторная графика рисунки

p, blockquote 17,0,0,0,0 —>

Как вариант, можно использовать маломощный сервер в качестве домашнего ПК, однако учитывайте, что обойдется такое удовольствие гораздо дороже обычного десктопного компьютера, из-за специфических комплектующих.

p, blockquote 18,0,0,0,0 —>

В 2002 году появился TFX для низкопрофильных корпусов. По сравнению с ATX, он имеет более вытянутую форму и наклон, что делает монтаж более удобным. Спроектирован стандарт с расчетом на выходную мощность от 180 до 300 Ватт, что вполне достаточно для компактных рабочих станций. Коннекторы для подключения питания:

p, blockquote 19,0,0,0,0 —>

  • Материнская плата – 20 или 24-пиновый
  • Процессор – 4‑пиновый +12 В.

Такие БП совместимы с материнками microATX, FlexATX, microBTX, picoBTX, Mini-ITX и DTX.

p, blockquote 20,0,0,0,0 —>

Компактный стандарт, представленный в 2003 году компанией Intel. Рассчитан на среднеразмерные системы с объемом корпуса от 10 до 15 литров. Выходная мощность до 300 Ватт. Имеют «неправильную» форму – не прямоугольный параллелепипед, как в предыдущих случаях, а Г‑образный профиль. Оборудован такими же разъемами, как и ATX. Может использоваться с материнскими платами microBTX, picoBTX и DTX.

p, blockquote 21,0,0,1,0 —>

Стандарт, разработанный в 2004 году компанией «Интел», как решение для ультракомпактных систем с объемом корпуса до 9 литров. Обеспечивает выходную мощность до 260 Ватт. Оборудован основным 24-пиновым и дополнительным 4‑пиновым коннекторами. Используется с материнками picoBTX, nanoBTX и DTX. Извините, но фотку этого зверька не нашел.

p, blockquote 22,0,0,0,0 —>

FlexATX

Стандарт, разработанный в 2007 году как решение для компактных настольных систем и серверов. Имеет основной 24-пиновый и дополнительный 4‑пиновый коннекторы. Совместим с материнскими платами microATX, FlexATX, microBTX, picoBTX, nanoBTX, Mini-ITX и DTX. Обеспечивает выходную мощность до 270 Ватт.

p, blockquote 23,0,0,0,0 —>

Как узнать форм фактор блока питания

При покупке комплектующих определить форм-фактор нового БП несложно: эта характеристика всегда указана в спецификации. По поводу апгрейда могу гарантировать: если вы не знаете, какой форм фактор БП используется на вашем компьютере, то с огромной долей вероятности это ATX.

p, blockquote 24,0,0,0,0 —>

Также на эту тему советую почитать статью про сертификаты блоков питания. А в качестве возможной покупки, рекомендую обратить внимание на устройство Chieftec 550W Retail GDP-550C [А‑90].

p, blockquote 25,0,0,0,0 —>

Спасибо за внимание и до следующих встреч, друзья! Не забывайте делиться публикациями в социальных сетях! Пока пока.

p, blockquote 26,0,0,0,0 —>

p, blockquote 27,0,0,0,0 —> p, blockquote 28,0,0,0,1 —>

Компьютерный блок питания (или сокращённо — блок питания, БП) — вторичный источник электропитания, предназначенный для снабжения узлов компьютера электроэнергией постоянного тока путём преобразования сетевого напряжения до требуемых значений.

Также в состав компьютера могут входить блоки преобразования уровня напряжения следующей ступени — третичные блоки питания и т. д. Примером таких преобразователей могут служить модуль питания центральных процессоров (в том числе модернизируемых), графических процессоров, а также устройства, требующие повышения напряжения или изменения характеристик тока — переменного, с изменением фазы.

В некоторой степени блок питания также выполняет функции стабилизации и защиты от незначительных помех питающего напряжения. Как компонент, занимающий значительную часть внутри корпуса компьютера, несёт в своём составе (либо монтируемые на корпусе БП) компоненты охлаждения частей внутри корпуса компьютера.

Читайте также:  Прославиться сразу на весь лагерь грамматическая основа

Содержание

Описание [ править | править код ]

Если брать, в качестве примера, блок питания для настольного компьютера персонального стандарта PC, то, согласно спецификации разных лет, он должен обеспечивать выходные напряжения ±5 / ±12 / +3,3 Вольт, а также +5 Вольт дежурного режима (+5VSB).

  • Основными силовыми цепями компьютеров периодически являлись линии напряжения +3,3, +5 и +12 В. Традиционно, чем выше напряжение в линии, тем большая мощность передаётся по данным цепям.
  • Отрицательные напряжения питания (−5 и −12 В) допускали небольшие токи и в современных материнских платах в настоящее время не используются.
  • Напряжение −5 В использовалось только интерфейсом ISAматеринских плат. Для обеспечения −5 В постоянного тока в ATX и ATX12V версии до 1.2 использовался контакт 20 и белый провод. Это напряжение (а также контакт и провод) не является обязательным уже в версии 1.2 и полностью отсутствует в версиях 1.3 и старше.
  • Напряжение −12 В необходимо лишь для полной реализации стандарта последовательного интерфейса RS-232 с использованием микросхем без встроенного инвертора и умножителя напряжения, поэтому также часто отсутствует.
  • Напряжение +12 В используется для питания наиболее мощных потребителей. Разделение питающих напряжений на 12 и 5 Вольт целесообразно как для снижения токов по печатным проводникам плат, так и для снижения потерь энергии на выходных выпрямительных диодах блока питания.
  • Напряжения ±5, +12, +3,3 В дежурного режима используются материнской платой.
  • Для жёстких дисков, оптических приводов, вентиляторов используются напряжения +5 и +12 В.
  • Наиболее мощные потребители энергии (такие, как видеокарта, центральный процессор, северный мост) подключаются через размещённые на материнской плате или на видеокарте вторичные преобразователи с питанием от цепей как +5 В, так и +12 В.
  • Напряжение +3,3 В в блоке питания формируется из напряжения +5 В, а потому существует ограничение суммарной потребляемой мощности по ±5 и +3,3 В.
  • Напряжение на модулях памяти имеет стойкую тенденцию к уменьшению и для DDR4 SDRAM снизилось до 1,2 Вольта.
  • В большинстве случаев, для компьютера в рассматриваемом примере, используется импульсный блок питания, выполненный по полумостовой (двухтактной) схеме. Блоки питания с накапливающими энергию трансформаторами (обратноходовая схема) естественно ограничены по мощности габаритами трансформатора и потому применяются значительно реже. Гораздо чаще встречается схема прямоходового однотактного преобразователя, которая не так ограничена по массо-габаритным показателям. При этом используются те же м/с, что и в обратноходовом преобразователе.

    Устройство (схемотехника) [ править | править код ]

    Широко распространённая схема импульсного источника питания состоит из следующих частей:

    Входные цепи

    • Входной фильтр, предотвращающий распространение импульсных помех в питающую сеть[1] . Также входной фильтр уменьшает бросок тока заряда электролитических конденсаторов при включении БП в сеть (это может привести к повреждению входного выпрямительного моста).
    • В качественных моделях — пассивный (в дешёвых) либо активный корректор мощности (PFC), снижающий нагрузку на питающую сеть.
    • Входной выпрямительный мост, преобразующий переменное напряжение в постоянное пульсирующее.
    • Конденсаторный фильтр, сглаживающий пульсации выпрямленного напряжения.
    • Отдельный маломощный блок питания, выдающий +5 В дежурного режима материнской платы и +12 В для питания микросхемы преобразователя самого БП. Обычно он выполнен в виде обратноходового преобразователя на дискретных элементах (либо с групповой стабилизацией выходных напряжений через оптрон плюс регулируемый стабилитрон TL431 в цепи ОС, либо линейными стабилизаторами 7805/7812 на выходе) или же (в топовых моделях) на микросхеме типа TOPSwitch.

    Преобразователь

    • Полумостовой преобразователь на двух биполярных транзисторах.
    • Схема управления преобразователем и защиты компьютера от превышения/снижения питающих напряжений, обычно на специализированной микросхеме (TL494, UC3844, KA5800, SG6105 и пр.).
    • Импульсный высокочастотный трансформатор, который служит для формирования необходимых номиналов напряжения, а также для гальванической развязки цепей (входных от выходных, а также, при необходимости, выходных друг от друга). Пиковые напряжения на выходе высокочастотного трансформатора пропорциональны входному питающему напряжению и значительно превышают требуемые выходные.
    • Цепи обратной связи, которые поддерживают стабильное напряжение на выходе блока питания.
    • Формирователь напряжения PG (Power Good, «напряжение в норме»), обычно на отдельном ОУ.
    Читайте также:  Игры на htc one

    Выходные цепи

    • Выходные выпрямители. Положительные и отрицательные напряжения (5 и 12 В) используют одни и те же выходные обмотки трансформатора, с разным направлением включения диодов выпрямителя. Для снижения потерь, при большом потребляемом токе, в качестве выпрямителей используют диоды Шоттки, обладающие малым прямым падением напряжения.
    • Дроссель выходной групповой стабилизации. Дроссель сглаживает импульсы, накапливая энергию между импульсами с выходных выпрямителей. Вторая его функция — перераспределение энергии между цепями выходных напряжений. Так, если по какому-либо каналу увеличится потребляемый ток, что снизит напряжение в этой цепи, дроссель групповой стабилизации как трансформатор пропорционально снизит напряжение по другим выходным цепям. Цепь обратной связи обнаружит снижение напряжения на выходе и увеличит общую подачу энергии, что восстановит требуемые значения напряжений.
    • Выходные фильтрующие конденсаторы. Выходные конденсаторы, вместе с дросселем групповой стабилизации интегрируют импульсы, тем самым получая необходимые значения напряжений, которые, благодаря дросселю групповой стабилизации, значительно ниже напряжений с выхода трансформатора.
    • Один (на одну линию) или несколько (на несколько линий, обычно +5 и +3,3) нагрузочных резисторов 10-25 Ом, для обеспечения безопасной работы на холостом ходу.

    Достоинства такого блока питания:

    • Простая и проверенная временем схемотехника с удовлетворительным качеством стабилизации выходных напряжений.
    • Высокий КПД (65—70 %). Основные потери приходятся на переходные процессы, которые длятся значительно меньшее время, чем устойчивое состояние. Больше всех греются диоды выпрямляющие 5 и 12 вольт. Силовые транзисторы греются мало .
    • Малые габариты и масса, обусловленные как малым выделением тепла на регулирующем элементе, так и малыми габаритами трансформатора, благодаря тому, что последний работает на высокой частоте.
    • Малая металлоёмкость, благодаря чему мощные импульсные источники питания стоят дешевле трансформаторных, несмотря на бо́льшую сложность.
    • Возможность подключения к сетям с широким диапазоном выбора напряжений и частот, или даже сетям постоянного тока. Благодаря этому возможна унификация техники, производимой для различных стран мира, а значит, и её удешевление при массовом производстве.

    Недостатки полумостового блока питания на биполярных транзисторах:

    • При построении схем силовой электроники использование биполярных транзисторов в качестве ключевых элементов снижает общий КПД устройства [2] . Управление биполярными транзисторами требует значительных затрат энергии.
      Всё больше компьютерных блоков питания строится на более дорогих мощных MOSFET-транзисторах. Схемотехника таких компьютерных блоков питания реализована как в виде полумостовых схем, так и обратноходовых преобразователей. Для удовлетворения массогабаритных требований к компьютерному блоку питания в обратноходовых преобразователях используются значительно более высокие частоты преобразования (100—150 кГц).
    • Большое количество намоточных изделий, индивидуально разрабатываемых для каждого типа блоков питания. Такие изделия снижают технологичность изготовления БП.
    • Во многих случаях недостаточная стабилизация выходного напряжения по каналам. Дроссель групповой стабилизации не позволяет с высокой точностью обеспечивать значения напряжений во всех каналах. Более дорогие, а также мощные современные блоки питания формируют напряжения ±5 и 3,3 В с помощью вторичных преобразователей из канала 12 В.

      Принципиальная схема БП персонального компьютера

      Ссылка на основную публикацию
      Adblock detector