В данном материале мы рассмотрим самое последнее существенное обновление процессорного ряда компании Intel: CPU Intel Core 2 Extreme QX9650 на ядре с кодовым наименованием Yorkfield. Данное ядро является частью нового семейства ядер для мобильных, десктопных и серверных процессоров под общим кодовым наименованием Penryn. Честно говоря, с наибольшим нетерпением основная группа пользователей ждала обновлённых двухъядерников на ядре Wolfdale — четырёхъядерники интересуют намного меньший процент потенциальных покупателей. Однако Intel в этот раз поступила как-то очень «по-AMD-шному», начав раскрутку нового семейства с процессоров для экстремалов и серверов. Поэтому следующее, что мы увидим после Core 2 Extreme QX9650, это будет серия из трёх процессоров Core 2 Quad (ядро Yorkfield):
Процессор | Частота, ГГц | Частота шины (QP, МГц) | Объём L2-кэша (МБ) | TDP, ватт |
Q9550 | 2,83 | 1333 | 12 (6×2) | 95 |
Q9450 | 2,66 | 1333 | 12 (6×2) | 95 |
Q9300 | 2,50 | 1333 | 6 (3×2) | 95 |
и пяти Core 2 Duo (ядро Wolfdale):
Процессор | Частота, ГГц | Частота шины (QP, МГц) | Объём L2-кэша (МБ) | TDP, ватт |
E8500 | 3,16 | 1333 | 6 | 65 |
E8400 | 3,0 | 1333 | 6 | 65 |
E8300 | 2,83 | 1333 | 6 | 65 |
E8200 | 2,66 | 1333 | 6 | 65 |
Однако произойдёт это уже в 2008 году. Ну а сейчас мы рассмотрим единственный процессор из нового семейства, который уже доступен… ну, по крайней мере, нашей тестовой лаборатории. 🙂
Архитектура Intel Core: небольшой, мягкий апгрейд
Переход на новый технологический процесс всегда оказывает благотворное влияние на фантазию разработчиков: и транзисторов можно впихнуть побольше, и энергопотребление на пару с нагревом снижаются просто за счёт техпроцесса, без применения разных хитрых и нестандартных технических решений. Поэтому нет ничего удивительного в том, что старый добрый Conroe решили немного модифицировать. Впрочем, модификации не отличаются особой оригинальностью подхода, и уж точно — первая из них.
- Новый кэш
- Новый набор инструкций
- Обновлённые функциональные блоки
- Конфигурация тестовых стендов
- Программное обеспечение
- Необходимое предисловие к диаграммам
- Пакеты трёхмерного моделирования
- CAD/CAE пакеты
- Обработка цифрового фото
- Компиляция
- Веб-сервер
- Синтетика
- Упаковка данных
- Оптическое распознавание
- Кодирование аудиоданных
- Кодирование видеоданных
- Общие баллы
- Предположительное энергопотребление
- Спецификации
- Основные данные
- Производительность
- Дополнительная информация
- Спецификации корпуса
- Усовершенствованные технологии
- Безопасность и надежность
- Заказ и соблюдение требований
- Продукция, снятая с производства
- Boxed Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775
- Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- Boxed Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775
- Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- Информация о соблюдении торгового законодательства
- Информация о PCN/MDDS
- SLAN3
- SLAWN
- Совместимая продукция
- Поиск совместимых системных плат для настольных ПК
- Семейство серверных плат Intel® S3200SH
- Семейство серверных плат Intel® X38ML
- Семейство серверных систем Intel® SR1000SH
- Наборы микросхем Intel® серии 4
- Наборы микросхем Intel® серии 3
- Файлы для загрузки и ПО
- Дата выпуска
- Литография
- Количество ядер
- Количество потоков
- Базовая тактовая частота процессора
- Кэш-память
- Частота системной шины
- Четность системной шины
- Расчетная мощность
- Диапазон напряжения V >Диапазон напряжения VID является индикатором значений минимального и максимального напряжения, на которых процессор должен работать. Процессор обеспечивает взаимодействие VID с VRM (Voltage Regulator Module), что, в свою очередь обеспечивает, правильный уровень напряжения для процессора.
- Доступные варианты для встраиваемых систем
- Поддерживаемые разъемы
- TCASE
- Технология Intel® Turbo Boost ‡
- Технология Intel® Hyper-Threading ‡
- Технология виртуализации Intel® (VT-x) ‡
- Архитектура Intel® 64 ‡
- Набор команд
- Состояния простоя
- Усовершенствованная технология Intel SpeedStep®
- Технология Intel® Demand Based Switching
- Технологии термоконтроля
- Новые команды Intel® AES
- Технология Intel® Trusted Execution ‡
- Функция Бит отмены выполнения ‡
- Процессор в штучной упаковке
- Процессор в штучной упаковке
- Процессор в штучной упаковке
- Процессор в штучной упаковке
- Процессор в оптовой упаковке
- Процессор в оптовой упаковке
- Дополнительные варианты поддержки Процессор Intel® Core™2 Extreme QX9650 (12 МБ кэш-памяти, тактовая частота 3,00 ГГц, частота системной шины 1333 МГц)
- Вам нужна дополнительная помощь?
- Оставьте отзыв
- Оставьте отзыв
- Общие характеристики
- Дополнительные характеристики
- Дополнительная информация
Новый кэш
Максимальный объём разделяемого между двумя ядрами L2-кэша увеличили до 6 МБ (ранее максимум был равен 4 МБ). Соответственно увеличилось и количество каналов ассоциативности — с 16 до 24 (легко заметить, что 6/4=24/16). Также благодаря новому механизму Enhanced Cache Line Split Load кэш стал более интеллектуальным: данный механизм пытается повысить скорость считывания блоков данных, которые распределены между разными строками кэша. Теоретически, это может увеличить скорость работы программ, активно сканирующих большие области памяти, например, всевозможных кодеков и архиваторов.
Новый набор инструкций
Компания Intel уже давно является законодательницей мод в области расширения набора x86-инструкций без кардинальной его переделки — MMX, SSE, SSE2, SSE3… Когда-то AMD пыталась с ней соперничать, создав расширение 3DNow!, но на этом попытки закончились, и сейчас она предпочитает просто лицензировать наборы расширений у Intel. Новое расширение имеет наименование SSE4.1, что должно подчеркнуть некоторую его незаконченность — подразумевается, что будет ещё как минимум SSE4.2. В SSE4.1 входят 47 новых команд, предназначенных для ускорения работы с потоковыми данными и кодирования видео, а также для использования в научных расчётах. Подробнее мы на данном вопросе останавливаться не будем т.к. он достоин отдельной статьи. Остаётся лишь добавить, что из популярного ПО SSE4.1 на данный момент уже поддерживает MPEG4-кодек DivX версии 6.7.
Обновлённые функциональные блоки
Основные изменения коснулись блоков быстрого деления и битовых смещений: Fast Radix-16 Divider и Super Shuffle Engine. Блок деления Radix-16, используемый в ядре Conroe, обрабатывал за один проход 2 бита, Fast Radix-16 — 4 бита. Новый же Super Shuffle Engine теперь обеспечивает выполнение любых операций битовых перестановок в 128-битном регистре за 1 такт. По словам Intel, это должно существенно ускорить выполнение не только команд из нового набора SSE4.1, но и «старых» SSE3. Ну и кроме того, нам обещают очередные плановые улучшения в механизмах виртуализации.
В целом, всё это как-то подозрительно напоминает Prescott, вам не кажется? 🙂 Однако мы всё же будем надеяться, что сходство исключительно формальное.
Аппаратное и программное обеспечение
Конфигурация тестовых стендов
Комплектующие, общие для всех проводимых тестов:
- Память типа DDR2: Corsair CM2X1024-6400C4, 2 x 1 ГБ, DDR2-800, 4-4-4-12.
- Память типа DDR: Corsair CMX1024-3500LLPRO, 2 x 1 ГБ, DDR-400, 2-3-2-6.
- Плата для LGA775: ASUS P5B Deluxe, чипсет Intel P965.
- Плата для Socket AM2: ASUS M2N32-SLI Deluxe, чипсет NVIDIA nForce 590 SLI.
- Плата для Socket 939: ECS RD480-A939, чипсет ATI CrossFire Xpress 1600.
- Жёсткий диск: Samsung HD401LJ (SATA-II).
- Кулер для процессоров Socket AM2: стандартный, боксовый.
- Кулер для процессоров Core 2 Duo / Celeron: стандартный, боксовый.
- Кулер для процессоров Core 2 Quad / Extreme: Zalman CNPS9700 NT.
- Блок питания: Cooler Master RS-A00-EMBA.
- Видеокарта: Reference NVIDIA GeForce 8800 GTX, 768 МБ DDR3, PCI-E x16.
Процессор | Core 2 eXtreme QX6700 | Core 2 eXtreme X6800 | Core 2 eXtreme QX6850 | Core 2 eXtreme QX9650 | Athlon 64 X2 6000+ |
Технология пр-ва | 65 нм | 65 нм | 45 нм | 90 нм | |
Частота ядра, ГГц | 2,66 | 2,93 | 3,0 | 3,0 | 3,0 |
Кол-во ядер | 4 | 2 | 4 | 4 | 2 |
Кэш L2*, МБ | 8 | 4 | 8 | 12 | 2×1 |
Частота шины**, МГц | 1066 (QP) | 1066 (QP) | 1333 (QP) | 1333 (QP) | 2×800 (DDR2) |
Коэффициент умножения | 10 | 11 | 9 | 9 | 15 |
Сокет | LGA775 | LGA775 | LGA775 | LGA775 | AM2 |
Типичное тепловыделение*** | 130 Вт | 130 Вт | 130 Вт | 130 Вт | 125 Вт |
AMD64/EM64T | + | + | + | + | + |
Virtualization Technology | + | + | + | + | + |
* — если указано «2x…», то имеется в виду «по … на каждое ядро»
** — у процессоров AMD — частота шины контроллера памяти
*** — у процессоров Intel и AMD указывается по-разному, поэтому сравнивать напрямую некорректно
Программное обеспечение
- Windows XP Professional x64 edition SP1
- 3ds max 9 x64 edition
- Maya 8.5 x64 edition
- Lightwave 3D 9 x64 edition
- MATLAB R2006a (7.2.0.32) x64 edition
- Pro/ENGINEER Wildfire 2.0
- SolidWorks 2005
- Photoshop CS2 (9.0)
- Visual Studio 2005 Professional
- Apache HTTP Server 2.2.4
- CPU RightMark 2005 Lite (1.3) x64 edition
- WinRAR 3.62
- 7-Zip 4.42 x64 edition
- FineReader 8.0 Professional
- LAME 3.97
- Monkey Audio 4.01
- OGG Encoder 2.83
- Windows Media Encoder 9 x64 edition
- Canopus ProCoder 2.01.30
- DivX 6.4
- Windows Media Video VCM 9
- x264 v.604
- XviD 1.1.2
- F.E.A.R. 1.08
- Half-Life 2 1.0
- Quake 4 1.3
- Call of Duty 2 1.2
- Serious Sam 2 2.07
- Supreme Commander 1.0.3220
Тестирование
Необходимое предисловие к диаграммам
Форма представления результатов в используемой нами методике тестирования имеет две особенности: во-первых, все типы данных приведены к одному — целочисленным относительным баллам (производительность рассматриваемого процессора относительно Intel Core 2 Duo E4300, если скорость последнего принять за 100 баллов), и, во-вторых, подробные результаты приводятся в виде таблицы в формате Microsoft Excel, в самой же статье присутствуют только сводные диаграммы по классам бенчмарков. Тем не менее, иногда мы будем обращать ваше внимание на подробные результаты, если они того заслуживают.
Пакеты трёхмерного моделирования
С самого начала QX9650 делает серьёзную заявку на победу: выигрыш у ближайшего конкурента составляет 6,5%. Конечно, сама по себе цифра достаточно скромная, но давайте не будем забывать, что частота у QX9650/6850 — одинаковая, поэтому выигрыш новичка обусловлен другими причинами.
CAD/CAE пакеты
Различные пакеты прореагировали на новый процессор совершенно по-разному: MATLAB даже больше понравился старый QX6850 (у него результат чуть повыше, чем у QX9650), SolidWorks остался практически равнодушен к новому CPU (всего 3% прироста скорости), а вот Pro/ENGINEER QX9650 встретил с бурным одобрением: его выигрыш у QX6850 в данном пакете составляет почти 6%.
Обработка цифрового фото
Даже если обратиться к подробным результатам, каких-то особенно выдающихся подтестов не видно: везде QX9650 чуть-чуть быстрее QX6850, благодаря чему в итоге он и оказывается чуть-чуть быстрее в среднем. Поэтому довольно сложно строить предположения о том, за счёт чего выигрывает новый процессор — то ли объём кэша повлиял, то ли ускоренные вычислительные блоки.
Компиляция
Компиляторы любят большой кэш, поэтому результат был предсказуем. С одной стороны, это радует (ведь «предсказание» было хорошее), с другой — на фоне явного преимущества QX9650 в объёме L2, другие его преимущества в этом тесте остались нераскрытыми. 🙂
Веб-сервер
Явление, о котором мы уже писали, сводит на нет все преимущества сегодняшних четырёхъядерников от Intel в архитектуре и объёме L2-кэша (особенно последнее).
Синтетика
Сногсшибательный результат, причём если обратиться к подробностям, то видно, что решающим стал почти 2-кратный выигрыш QX9650 в модуле Solver, который не распараллелен, и занимается обсчётом физической модели. Пожалуй, мы закажем программистам CPU RightMark отдельное исследование по данному вопросу, но основной вывод настолько очевиден, что, скорее всего, правилен: мы наблюдаем результаты модернизации вычислительных блоков процессора (к объёму кэша CPU RM достаточно равнодушен, это подтверждается многими прошлыми тестированиями).
Упаковка данных
Достаточно скромный результат, учитывая выросший в полтора раза объём кэша второго уровня. Есть предположение, что основная проблема в платформе, и узким местом стала память.
Оптическое распознавание
Здесь, судя по трём верхним линейкам, мы явно упёрлись во что-то другое, но никак не в процессор. Может, в подсистему памяти? Тогда, по идее, это будет заметно в будущих тестах с использованием DDR3-1333…
Кодирование аудиоданных
«Старая» подгруппа тестов, практически полностью потерявшая актуальность на данный момент ввиду высокой предсказуемости результатов. No comments.
Кодирование видеоданных
Особенных преимуществ в кодировании видео QX9650 не продемонстрировал, хотя надежды на ускоренные блоки после результатов CPU RightMark у нас появились. Однако не удовлетворившись стандартными тестами по основной методике, мы захотели попробовать, какие же неизведанные прелести несёт нам кодек DivX 6.7 с поддержкой SSE4. Настройка этой поддержки происходит вот таким образом:
Как видите, в настройках кодека DivX 6.7 появилась новая опция Experimental SSE4 full search. Вообще-то, если уж по-честному, то использование разработчиками ПО эвфемизма «Experimental» знающим людям само по себе говорит многое. В переводе с технического на русский, это, как правило, звучит примерно так: «Мы тут чего-то напрограммировали, впечатлённые новыми возможностями — но всерьёз это даже сами пока не воспринимаем».
Результаты, полученные нами, выглядят достаточно странно. Судите сами:
Разрешение использования данной функции кодека, как легко заметить по результатам тестов — приводит, в общем-то, к замедлению процесса кодирования. Однако если функция реализуется с помощью команд SSE2, то замедление оказывается довольно существенным, а вот если с помощью команд SSE4 — почти неощутимым.
Таким образом, на основании имеющихся у нас данных и принципа Оккама, мы можем предположить следующее: была у разработчиков кодека DivX некая мечта, но до появления SSE4.1 воплощение её в коде было уж слишком «тормозным». А тут вдруг предоставилась такая интересная возможность…
Остаётся надеяться, что «мечта» действительно обеспечивает увеличение качества закодированной картинки или степени сжатия т.к. в противном случае не очень понятно, зачем её вообще реализовывать. 🙂
Несмотря на внушительную победу QX9650, нам всё же хочется обратить ваше внимание на подробные результаты, приведенные в таблице. Нетрудно заметить, что основное превосходство новый процессор продемонстрировал в режимах Low Quality или (иногда) Medium Quality. Это свидетельствует о том, что перспективы у него самые замечательные (мощности процессора хватает с запасом в том числе для игр), но в качестве процессора для игровой машины сегодняшнего дня, QX9650 окажется, скорее всего, избыточным: в высоких разрешениях и при высоком качестве графики, мы всё равно упираемся в видеокарту, и разница между QX9650 и QX6850 практически неощутима.
Общие баллы
Линейки на диаграммах говорят сами за себя. Мы лишь отметим, что в «профессиональном» ПО отрыв процессора на базе нового ядра от ближайшего конкурента выглядит намного более внушительно, чем в «домашнем». В целом, тенденция с нашей точки зрения сугубо положительная: пусть «монстры производительности» будут быстры именно там, где их производительность смогут оценить по достоинству.
Предположительное энергопотребление
Несмотря на заявленный TDP 130 ватт (в точности такой же, как у QX6850), реальное энергопотребление QX9650 при 100% нагрузке равно 76 ваттам, что даже меньше чем у более низкочастотного QX6700, произведенного по старой 65-нм технологии. И даже если рассматривать данную цифру в абсолютном значении, согласитесь: 76 ватт для самого топового продукта в линейке — это явно немного. Давненько мы не видали high-end процессоров, которым бы удалось не перешагнуть знаковый 100-ваттный рубеж.
К счастью, Prescott из Penryn не получился: при одинаковой частоте работы ядра, новый процессор оказался на внушительные 8% быстрее старого (согласно общего среднего балла нашей методики), причём некоторые признаки свидетельствуют о том, что не только за счёт экстенсивного подхода (увеличение объёма L2-кэша), но и за счёт реального повышения быстродействия вычислительных блоков. На новую архитектуру это, конечно, не тянет, но обновление существующей явно удалось. Если ещё и с доступностью «нижних» моделей на новом ядре проблем не будет, то основному конкуренту Intel, кажется, пора начинать серьёзно беспокоиться: пока мы всё ждём и ждём фактического появления на десктопе AMD K10, новая архитектура Intel уже в который раз демонстрирует взятие очередной планки производительности. Если так и дальше пойдёт — кое-кто может дождаться ситуации, когда его новые процессоры окажутся по быстродействию слабее более «старых» конкурентов…
Спецификации
Сравнение продукции Intel®
Основные данные
- Коллекция продукции Устаревшие процессоры Intel® Core™
- Кодовое название Продукция с прежним кодовым названием Yorkfield
- Вертикальный сегмент Desktop
- Процессор Номер QX9650
- Не включенные в план выпуска продукты Нет
- Состояние Discontinued
- Дата выпуска Q4’07
- Литография 45 nm
Производительность
- Количество ядер 4
- Количество потоков 4
- Базовая тактовая частота процессора 3.00 GHz
- Кэш-память 12 MB L2 Cache
- Частота системной шины 1333 MHz
- Четность системной шины Да
- Расчетная мощность 130 W
- Диапазон напряжения VID 0.8500V-1.3625V
Дополнительная информация
- Доступные варианты для встраиваемых систем Нет
- Техническое описание Смотреть
Спецификации корпуса
- Поддерживаемые разъемы LGA775
- TCASE 64.5°C
- Размер корпуса 37.5mm x 37.5mm
- Размер ядра процессора 214 mm 2
- Кол-во транзисторов в ядре процессора 820 million
Усовершенствованные технологии
- Технология Intel® Turbo Boost ‡ Нет
- Технология Intel® Hyper-Threading ‡ Нет
- Технология виртуализации Intel® (VT-x) ‡ Да
- Архитектура Intel® 64 ‡ Да
- Набор команд 64-bit
- Состояния простоя Да
- Усовершенствованная технология Intel SpeedStep® Да
- Технология Intel® Demand Based Switching Нет
- Технологии термоконтроля Да
Безопасность и надежность
- Новые команды Intel® AES Нет
- Технология Intel® Trusted Execution ‡ Нет
- Функция Бит отмены выполнения ‡ Да
Заказ и соблюдение требований
Продукция, снятая с производства
Boxed Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775
- MM# 894493
- Код SPEC SLAN3
- Код заказа BX80569QX9650
- Средство доставки BOX
- Степпинг C0
Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- MM# 894382
- Код SPEC SLAN3
- Код заказа BX80569QX9650A
- Средство доставки BOX
- Степпинг C0
Boxed Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775
- MM# 897412
- Код SPEC SLAWN
- Код заказа BX80569QX9650
- Средство доставки BOX
- Степпинг C1
Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- MM# 893954
- Код SPEC SLAN3
- Код заказа BX80569X9650
- Средство доставки BOX
- Степпинг C0
Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- MM# 893496
- Код SPEC SLAN3
- Код заказа EU80569XJ080NL
- Средство доставки TRAY
- Степпинг C0
Intel® Core™2 Extreme Processor QX9650 (12M Cache, 3.00 GHz, 1333 MHz FSB) LGA775, Tray
- MM# 896591
- Код SPEC SLAWN
- Код заказа EU80569XJ080NL
- Средство доставки TRAY
- Степпинг C1
Информация о соблюдении торгового законодательства
- ECCN 3A991.A.1
- CCATS NA
- US HTS 8542310001
Информация о PCN/MDDS
SLAN3
- 894493 PCN | MDDS
- 893496 PCN | MDDS
SLAWN
- 897412 PCN
- 896591 PCN | MDDS
Совместимая продукция
Поиск совместимых системных плат для настольных ПК
Поиск плат, совместимых с Процессор Intel® Core™2 Extreme QX9650 в инструменте проверки совместимости для настольных ПК
Семейство серверных плат Intel® S3200SH
Семейство серверных плат Intel® X38ML
Семейство серверных систем Intel® SR1000SH
Наборы микросхем Intel® серии 4
Наборы микросхем Intel® серии 3
Файлы для загрузки и ПО
Дата выпуска
Дата выпуска продукта.
Литография
Литография указывает на полупроводниковую технологию, используемую для производства интегрированных наборов микросхем и отчет показывается в нанометре (нм), что указывает на размер функций, встроенных в полупроводник.
Количество ядер
Количество ядер — это термин аппаратного обеспечения, описывающий число независимых центральных модулей обработки в одном вычислительном компоненте (кристалл).
Количество потоков
Поток или поток выполнения — это термин программного обеспечения, обозначающий базовую упорядоченную последовательность инструкций, которые могут быть переданы или обработаны одним ядром ЦП.
Базовая тактовая частота процессора
Базовая частота процессора — это скорость открытия/закрытия транзисторов процессора. Базовая частота процессора является рабочей точкой, где задается расчетная мощность (TDP). Частота измеряется в гигагерцах (ГГц) или миллиардах вычислительных циклов в секунду.
Кэш-память
Кэш-память процессора — это область быстродействующей памяти, расположенная в процессоре. Интеллектуальная кэш-память Intel® Smart Cache указывает на архитектуру, которая позволяет всем ядрам совместно динамически использовать доступ к кэшу последнего уровня.
Частота системной шины
Шина — это подсистема, передающая данные между компонентами компьютера или между компьютерами. В качестве примера можно назвать системную шину (FSB), по которой происходит обмен данными между процессором и блоком контроллеров памяти; интерфейс DMI, который представляет собой соединение "точка-точка" между встроенным контроллером памяти Intel и блоком контроллеров ввода/вывода Intel на системной плате; и интерфейс Quick Path Interconnect (QPI), соединяющий процессор и интегрированный контроллер памяти.
Четность системной шины
Четность системной шины обеспечивает возможность проверки ошибок в данных, отправленных в FSB (системная шина).
Расчетная мощность
Расчетная тепловая мощность (TDP) указывает на среднее значение производительности в ваттах, когда мощность процессора рассеивается (при работе с базовой частотой, когда все ядра задействованы) в условиях сложной нагрузки, определенной Intel. Ознакомьтесь с требованиями к системам терморегуляции, представленными в техническом описании.
Диапазон напряжения V >Диапазон напряжения VID является индикатором значений минимального и максимального напряжения, на которых процессор должен работать. Процессор обеспечивает взаимодействие VID с VRM (Voltage Regulator Module), что, в свою очередь обеспечивает, правильный уровень напряжения для процессора.
Доступные варианты для встраиваемых систем
Доступные варианты для встраиваемых систем указывают на продукты, обеспечивающие продленную возможность приобретения для интеллектуальных систем и встроенных решений. Спецификация продукции и условия использования представлены в отчете Production Release Qualification (PRQ). Обратитесь к представителю Intel для получения подробной информации.
Поддерживаемые разъемы
Разъемом называется компонент, которые обеспечивает механические и электрические соединения между процессором и материнской платой.
TCASE
Критическая температура — это максимальная температура, допустимая в интегрированном теплораспределителе (IHS) процессора.
Технология Intel® Turbo Boost ‡
Технология Intel® Turbo Boost динамически увеличивает частоту процессора до необходимого уровня, используя разницу между номинальным и максимальным значениями параметров температуры и энергопотребления, что позволяет увеличить эффективность энергопотребления или при необходимости «разогнать» процессор.
Технология Intel® Hyper-Threading ‡
Intel® Hyper-Threading Technology (Intel® HT Technology) обеспечивает два потока обработки для каждого физического ядра. Многопоточные приложения могут выполнять больше задач параллельно, что значительно ускоряет выполнение работы.
Технология виртуализации Intel® (VT-x) ‡
Технология Intel® Virtualization для направленного ввода/вывода (VT-x) позволяет одной аппаратной платформе функционировать в качестве нескольких «виртуальных» платформ. Технология улучшает возможности управления, снижая время простоев и поддерживая продуктивность работы за счет выделения отдельных разделов для вычислительных операций.
Архитектура Intel® 64 ‡
Архитектура Intel® 64 в сочетании с соответствующим программным обеспечением поддерживает работу 64-разрядных приложений на серверах, рабочих станциях, настольных ПК и ноутбуках.¹ Архитектура Intel® 64 обеспечивает повышение производительности, за счет чего вычислительные системы могут использовать более 4 ГБ виртуальной и физической памяти.
Набор команд
Набор команд содержит базовые команды и инструкции, которые микропроцессор понимает и может выполнять. Показанное значение указывает, с каким набором команд Intel совместим данный процессор.
Состояния простоя
Режим состояния простоя (или C-состояния) используется для энергосбережения, когда процессор бездействует. C0 означает рабочее состояние, то есть ЦПУ в данный момент выполняет полезную работу. C1 — это первое состояние бездействия, С2 — второе состояние бездействия и т.д. Чем выше численный показатель С-состояния, тем больше действий по энергосбережению выполняет программа.
Усовершенствованная технология Intel SpeedStep®
Усовершенствованная технология Intel SpeedStep® позволяет обеспечить высокую производительность, а также соответствие требованиям мобильных систем к энергосбережению. Стандартная технология Intel SpeedStep® позволяет переключать уровень напряжения и частоты в зависимости от нагрузки на процессор. Усовершенствованная технология Intel SpeedStep® построена на той же архитектуре и использует такие стратегии разработки, как разделение изменений напряжения и частоты, а также распределение и восстановление тактового сигнала.
Технология Intel® Demand Based Switching
Intel® Demand Based Switching — это технология управления питанием, в которой прикладное напряжение и тактовая частота микропроцессора удерживаются на минимальном необходимом уровне, пока не потребуется увеличение вычислительной мощности. Эта технология была представлена на серверном рынке под названием Intel SpeedStep®.
Технологии термоконтроля
Технологии термоконтроля защищают корпус процессора и систему от сбоя в результате перегрева с помощью нескольких функций управления температурным режимом. Внутрикристаллический цифровой термодатчик температуры (Digital Thermal Sensor — DTS) определяет температуру ядра, а функции управления температурным режимом при необходимости снижают энергопотребление корпусом процессора, тем самым уменьшая температуру, для обеспечения работы в пределах нормальных эксплуатационных характеристик.
Новые команды Intel® AES
Команды Intel® AES-NI (Intel® AES New Instructions) представляют собой набор команд, позволяющий быстро и безопасно обеспечить шифрование и расшифровку данных. Команды AES-NI могут применяться для решения широкого спектра криптографических задач, например, в приложениях, обеспечивающих групповое шифрование, расшифровку, аутентификацию, генерацию случайных чисел и аутентифицированное шифрование.
Технология Intel® Trusted Execution ‡
Технология Intel® Trusted Execution расширяет возможности безопасного исполнения команд посредством аппаратного расширения возможностей процессоров и наборов микросхем Intel®. Эта технология обеспечивает для платформ цифрового офиса такие функции защиты, как измеряемый запуск приложений и защищенное выполнение команд. Это достигается за счет создания среды, где приложения выполняются изолированно от других приложений системы.
Функция Бит отмены выполнения ‡
Бит отмены выполнения — это аппаратная функция безопасности, которая позволяет уменьшить уязвимость к вирусам и вредоносному коду, а также предотвратить выполнение вредоносного ПО и его распространение на сервере или в сети.
Процессор в штучной упаковке
Авторизованные дистрибьюторы Intel продают процессоры Intel в упаковках Intel с четким обозначением. Эти процессоры называются процессорами в штучной упаковке. На них, как правило, распространяется трехлетняя гарантия.
Процессор в штучной упаковке
Авторизованные дистрибьюторы Intel продают процессоры Intel в упаковках Intel с четким обозначением. Эти процессоры называются процессорами в штучной упаковке. На них, как правило, распространяется трехлетняя гарантия.
Процессор в штучной упаковке
Авторизованные дистрибьюторы Intel продают процессоры Intel в упаковках Intel с четким обозначением. Эти процессоры называются процессорами в штучной упаковке. На них, как правило, распространяется трехлетняя гарантия.
Процессор в штучной упаковке
Авторизованные дистрибьюторы Intel продают процессоры Intel в упаковках Intel с четким обозначением. Эти процессоры называются процессорами в штучной упаковке. На них, как правило, распространяется трехлетняя гарантия.
Процессор в оптовой упаковке
Intel поставляет эти процессоры OEM-производителям, которые предустанавливают их в свои системы. Intel называет такие процессоры процессорами в оптовой упаковке или OEM-процессорами. Для таких процессоров Intel не предоставляет непосредственное гарантийное обслуживание. За гарантийной поддержкой обращайтесь к OEM-производителю или реселлеру.
Процессор в оптовой упаковке
Intel поставляет эти процессоры OEM-производителям, которые предустанавливают их в свои системы. Intel называет такие процессоры процессорами в оптовой упаковке или OEM-процессорами. Для таких процессоров Intel не предоставляет непосредственное гарантийное обслуживание. За гарантийной поддержкой обращайтесь к OEM-производителю или реселлеру.
Дополнительные варианты поддержки Процессор Intel® Core™2 Extreme QX9650 (12 МБ кэш-памяти, тактовая частота 3,00 ГГц, частота системной шины 1333 МГц)
Вам нужна дополнительная помощь?
Оставьте отзыв
Оставьте отзыв
Наша цель — сделать семейство инструментов ARK максимально полезным для вас ресурсом. Оставьте свои вопросы, комментарии или предложения здесь. Вы получите ответ в течение 2 рабочих дней.
Ваши комментарии отправлены. Спасибо за ваш отзыв.
Предоставленная вами персональная информация будет использована только для ответа на этот запрос. Ваше имя и адрес электронной почты не будут добавлены ни в какие списки рассылок, и вы не будете получать электронные сообщения от корпорации Intel без вашего запроса. Нажимая кнопку «Отправить», вы подтверждаете принятие Условий использования Intel и понимание Политики конфиденциальности Intel.
Вся информация, приведенная в данном документе, может быть изменена в любое время без предварительного уведомления. Корпорация Intel сохраняет за собой право вносить изменения в цикл производства, спецификации и описания продукции в любое время без уведомления. Информация в данном документе предоставлена «как есть». Корпорация Intel не делает никаких заявлений и гарантий в отношении точности данной информации, а также в отношении характеристик, доступности, функциональных возможностей или совместимости перечисленной продукции. За дополнительной информацией о конкретных продуктах или системах обратитесь к поставщику таких систем.
Классификации Intel приведены исключительно в информационных целях и состоят из номеров классификации экспортного контроля (ECCN) и номеров Гармонизированных таможенных тарифов США (HTS). Классификации Intel должны использоваться без отсылки на корпорацию Intel и не должны трактоваться как заявления или гарантии в отношении правильности ECCN или HTS. В качестве импортера и/или экспортера ваша компания несет ответственность за определение правильной классификации вашей транзакции.
Формальные определения свойств и характеристик продукции представлены в техническом описании.
‡ Эта функция может присутствовать не во всех вычислительных системах. Свяжитесь с поставщиком, чтобы получить информацию о поддержке этой функции вашей системой или уточнить спецификацию системы (материнской платы, процессора, набора микросхем, источника питания, жестких дисков, графического контроллера, памяти, BIOS, драйверов, монитора виртуальных машин (VMM), платформенного ПО и/или операционной системы) для проверки совместимости с этой функцией. Функциональные возможности, производительность и другие преимущества этой функции могут в значительной степени зависеть от конфигурации системы.
Расчетная мощность системы и максимальная расчетная мощность рассчитаны для максимально возможных показателей. Реальная расчетная мощность может быть ниже, если используются не все каналы ввода/вывода набора микросхем.
Максимальная тактовая частота с технологией Turbo Boost — это максимальная тактовая частота одноядерного процессора, которую можно достичь с помощью технологии Intel® Turbo Boost. Более подробную информацию можно найти по адресу www.intel.com/content/www/ru/ru/architecture-and-technology/turbo-boost/turbo-boost-technology.html.
Анонсированные артикулы (SKUs) на данный момент недоступны. Обратитесь к графе «Дата выпуска» для получения информации о доступности продукции на рынке.
Номера процессоров Intel® не служат мерой измерения производительности. Номера процессоров указывают на различия характеристик процессоров в пределах семейства, а не на различия между семействами процессоров. Дополнительную информацию смотрите на сайте http://www.intel.com/content/www/ru/ru/processors/processor-numbers.html.
Некоторые продукты могут поддерживать новые наборы инструкций AES с обновлением конфигурации процессоров, в частности, i7-2630QM/i7-2635QM, i7-2670QM/i7-2675QM, i5-2430M/i5-2435M, i5-2410M/i5-2415M. Свяжитесь с OEM-поставщиком для получения BIOS, включающего последнее обновление конфигурации процессора.
Для процессоров с поддержкой 64-разрядных архитектур Intel® требуется поддержка технологии Intel® 64 в BIOS.
![]() |
Производитель процессора ![]() |
Компания, разработавшая данную модель процессора.

Сокет (Socket) – тип разъема для подключения процессора к материнской плате. Для совместимости сокеты на материнской плате и процессоре должны совпадать (хотя есть исключения, например, AM3 и AM3+).

Ядро процессора – самостоятельный блок, который способен выполнять определенные команды. Каждое дополнительное ядро позволяет параллельно выполнять дополнительный поток вычислительных и иных операций. Поэтому количество ядер является одной из основных характеристик, определяющих производительность процессора. Чем больше количество ядер, тем выше производительность процессора.

Тактовая частота – количество циклов, создаваемых тактовым генератором за 1 секунду. Чем выше данный показатель, тем быстрее работает процессор.
Дополнительные характеристики

Название ядра – кодовое имя, обозначающее тип ядра. Процессоры из одной линейки могут иметь разные типы ядра, а, соответственно, и отличаться производительностью.

FSB (Front side bus) – шина (интерфейс передачи данных) между процессором и материнской платой. Чем выше данный показатель, тем выше производительность процессора.
Стоит отметить, что для совместимости с процессором материнская плата должна поддерживать его частоту FSB. На многих современных процессорах и материнских платах не указывается частота (или тип) шины FSB. Поскольку почти все современные материнские платы поддерживают частоту FSB любых процессоров. Единственным критерием совместимости в этом случае остается сокет.
На старых моделях этот показатель указывали в МГц, на современных указывается технология, а не частота.
DMI (Direct Media Interface) — последовательная шина, используемая для соединения большинства процессоров Intel.
HT (HyperTransport) — это современная двунаправленная шина с высокой пропускной способностью, используемая в процессорах фирмы AMD.
QPI (QuickPath Interconnect) — последовательная шина предназначенная для соединения процессора и чипсета материнской платы, разработанная фирмой Intel. QPI стала ответом на разработанную компанией AMD шину HyperTransport. Используется в основном в высокопроизводительных многопроцессорных системах.

Коэффициента умножения говорит о том, на сколько надо умножить частоту FSB, чтобы получить фактическую тактовую частоту процессора. Например, для процессора с частотой FSB 400 МГц и коэффициентом умножения 6 тактовая частота будет равна 6х400=2400 МГц.

Кэш процессора – область памяти, в которую процессор записывает часто используемые данные. Скорость доступа к кэш-памяти гораздо выше, чем к оперативной — разница в скорости доступа может быть более, чем тысячекратной. Прежде, чем считать данные из оперативной памяти процессор пытается их найти в своем кэше. Современные процессоры способны с высокой точностью предсказывать какие данные им вскоре потребуются и подгружать их заранее, тем самым обеспечивая крайне высокий шанс попадания в кэш.
Стоит отметить, что увеличение размера кэша не всегда приводит к увеличению производительности. Все зависит от особенностей работы конкретного приложения. В большинстве случаев влияние кэша на производительность незначительное (не более 10% в случае его увеличения в несколько раз).
Кэш 1-го уровня (L1) – локальный кэш ядра процессора. Самый быстрый, но при этом самый маленький по объему. Хранит отдельно инструкции и данные.

Кэш процессора – область памяти, в которую процессор записывает часто используемые данные. Скорость доступа к кэш-памяти гораздо выше, чем к оперативной — разница в скорости доступа может быть более, чем тысячекратной. Прежде, чем считать данные из оперативной памяти процессор пытается их найти в своем кэше. Современные процессоры способны с высокой точностью предсказывать какие данные им вскоре потребуются и подгружать их заранее, тем самым обеспечивая крайне высокий шанс попадания в кэш.
Стоит отметить, что увеличение размера кэша не всегда приводит к увеличению производительности. Все зависит от особенностей работы конкретного приложения. В большинстве случаев влияние кэша на производительность незначительное (не более 10% в случае его увеличения в несколько раз).
Кэш 2-го уровня (L2) — локальный кэш ядра процессора. Быстрее кэша 3-го уровня, но медленнее 1-го. Значительно больше по объему кэша 1-го уровня. Хранит инструкции и данные вместе.

Кэш процессора – область памяти, в которую процессор записывает часто используемые данные. Скорость доступа к кэш-памяти гораздо выше, чем к оперативной — разница в скорости доступа может быть более, чем тысячекратной. Прежде, чем считать данные из оперативной памяти процессор пытается их найти в своем кэше. Современные процессоры способны с высокой точностью предсказывать какие данные им вскоре потребуются и подгружать их заранее, тем самым обеспечивая крайне высокий шанс попадания в кэш.
Стоит отметить, что увеличение размера кэша не всегда приводит к увеличению производительности. Все зависит от особенностей работы конкретного приложения. В большинстве случаев влияние кэша на производительность незначительное (не более 10% в случае его увеличения в несколько раз).
Кэш 3-го уровня (L3) – общий кэш для всех ядер процессора. Разница по объему с кэшем 2-го уровня незначительная. Самый медленный из всех кэшей, но зато он является общим, что позволяет хранить в нем данные необходимые всем ядрам процессора.

Интегрированное графическое ядро – это встроенная в процессор видеокарта. Оно позволяет выводить картинку на устройства вывода информации в отсутствии дискретной видеокарты. Часть ресурсов (процессорного времени, оперативной памяти) при этом расходуется на отрисовку картинки. Следует отметить, что материнская плата должна поддерживать данную возможность.

Интегрированное графическое ядро – это встроенная в процессор видеокарта. Оно позволяет выводить картинку на устройства вывода информации в отсутствии дискретной видеокарты. Часть ресурсов (процессорного времени, оперативной памяти) при этом расходуется на отрисовку картинки. Следует отметить, что материнская плата должна поддерживать данную возможность.

Контроллер памяти позволяет процессору напрямую обмениваться информацией с оперативной памятью, что уменьшает время задержки на получение данных. Почти на всех современных моделях контроллер памяти встроен в процессор. В старых моделях, на которых контроллер памяти был встроен в чипсет материнской платы передача данных от процессора к оперативной памяти была чуть медленнее (из-за наличия посредника — чипсета).

Максимальная скорость обмена данными между процессором и оперативной памятью.

Набор инструкций, которые поддерживает процессор. Чем больше инструкций поддерживает процессор, тем выше его быстродействие.
MMX, SSE, SSE2 – самые примитивные инструкций, поддерживаются всеми процессорами.
SSE3 содержит 13 дополнительных инструкций, оптимизирующих работу процессора для выполнения потоковых операций.
SSE4 – 54 дополнительные команды, поддерживаемые процессором, которые в первую очередь нацелены на увеличение производительности. Они призваны увеличить быстродействие при работе с 3D графикой и медиа.
3DNow! – также как и SSE4, это набор инструкций для работы с графикой. Поддерживается только процессорами фирмы AMD.

Кодовое название процессора

Чем выше этот показатель, тем более высокие температуры способен выдержать процессор, сохраняя при этом рабочее состояние. При достижении максимальной температуры процессор выключается. Чтобы этого не происходило рекомендуется использовать радиаторы с рассеивающей мощностью не ниже максимального тепла, выделяемого процессором.

Показывает какое напряжение необходимо процессору для корректной работы.

Позволяют запускать на процессорах с поддержкой данной технологии 64-битные приложения и получать прирост производительности по сравнению с аналогичными 32-битными.
AMD64 – технология, которая реализована в процессорах компании AMD.
EM64T — технология, которая реализована в процессорах компании Intel.

Технология Hyper-Threading, разработанная компанией Intel, позволяет процессору выполнять параллельно два потока команд на одном физическом ядре. Это, в большинстве случаев, существенно повышает производительность.
Но следует отметить, что 2 потока команд на одном ядре выполняются значительно медленнее чем 2 потока команд на 2-х ядрах.

Технология Intel vPro позволяет удаленно управлять компьютером: заходить в его BIOS (EFI), устанавливать драйвера, диагностировать его состояние и т.д.. Данная технология работает на очень низком уровне, что позволяет пользоваться ей без установки драйверов и даже операционных систем.
Еще одной важной ее особенностью является то, что она позволяет заблокировать доступ к компьютеру, например, в случае его кражи.

NX Bit — технология, блокирующая исполнение низкоуровневого вредоносного кода. Существенно повышает безопасность работы.

Virtualization Technology – технология, позволяющая запускать на одном физическом компьютере несколько операционных систем (виртуальных машин) одновременно. Это позволяет разместить на одной физической машине несколько виртуальных, причем функционировать каждая из них будет как абсолютно обособленный компьютер.

Техпроцесс — размер транзисторов, при помощи которых создается данная архитектура. Чем он меньше, тем больше элементов можно разместить на кристалле процессора и образовать более сложную архитектуру.

Количество тепла, выделяемого процессором в моменты пиковой нагрузки. Чем этот показатель ниже, тем проще охлаждать данную модель процессора.
Дополнительная информация
Дополнительная информация: напряжение на ядре: 0.85В — 1.3625В