Решение систем трех уравнений с четырьмя неизвестными

Решение систем трех уравнений с четырьмя неизвестными

68. Уравнения с четырьмя и более неизвестными . Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).

Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.

Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.

Рассмотрим 2 примера. Пример 1:

x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5

Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно

2x + 2y = 16 или x + y = 8.

Сложив по частям 3-е и 4-е уравнения, получим:

2x – 2y = –4 или x – y = –2.

Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.

Подставляя эти значения в 1-е и в 3-е уравнения, получим:

3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7

Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.

Теперь остается решить 2 уравнения с 2 неизвестными:

Используя этот онлайн калькулятор для решения систем линейных уравнений (СЛУ) методом Гаусса, вы сможете очень просто и быстро найти решение системы.

Читайте также:  Можно ли поменять тачскрин без дисплея

Воспользовавшись онлайн калькулятором для решения систем линейных уравнений методом Гаусса, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на решения систем линейных уравнений, а также закрепить пройденный материал.

Решить систему линейных уравнений методом Гаусса

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений методом Гаусса

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с "+" на "-" вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x 1 — 7 x 2 — x 4 = 2

будет вводится в калькулятор следующим образом:

Дополнительные возможности калькулятора для решения систем линейных уравнений методом Гаусса

  • Между полями для ввода можно перемещаться нажимая клавиши "влево", "вправо", "вверх" и "вниз" на клавиатуре.
  • Вместо x 1, x 2, . вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые системы уравнений

Этот онлайн калькулятор в два шага:

  • Добавить нужное кол-во уравнений
  • Ввести уравнения

Решение системы линейных уравнений методом Крамера

Это он-лайн сервис в два шага:

  • Ввести количество уравнений в системе
  • Ввести коэффициенты при неизвестных слагаемых

Методом Гаусса

Этот онлайн калькулятор в три шага:

  • Ввести количество уравнений в системе
  • Ввести количество незвестных
  • Ввести коэффициенты при неизвестных слагаемых

© Контрольная работа РУ — калькуляторы онлайн

Ссылка на основную публикацию
Adblock detector