Схема двухкамерного холодильника с одним компрессором

ПРИБОРЫ КИП ДЛЯ АХУ ЭЛЕКТРОМОНТАЖ НАЛАДКА ОБСЛУЖИВАНИЕ СРАВНЕНИЯ

В двухкамерном холодильнике для получения низкой температуры (в морозильном отделении или в отделении для хранения замороженных продуктов) и плюсовой температуры (в отделении для хранения свежих охлаждённых продуктов) применяют различные схемы автоматизации. Наиболее простой считается схема автоматизации с общим регулирующим устройством.

Схема автоматизации двухкамерного домашнего холодильника с общим регулирующим устройством: НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор.

Холодильный агент подаётся через одно регулирующее устройство сначала в испаритель низкотемпературного отделения, а затем в испаритель высокотемпературной камеры. При таком способе питания испарителей холодильным агентом в испарителе низкотемпературной камеры происходит неполное испарение агента и парожидкостная смесь холодильного агента поступает в испаритель высокотемпературной камеры, где поддерживается более высокая температура.

Работой компрессора управляет терморегулятор, капилляр которого контактирует с испарителем низко- или высокотемпературной камер. В последнем случае в морозильном отделении образуется большой перепад температур. Для снижения перепада на испарителе вблизи капилляра термореле часто устанавливают температурный стабилизатор, в качестве которого используют электрический нагреватель мощностью в 6-10 вт.

ПО-пусковая обмотка двигателя, РО-рабочая обмотка двигателя, , ЗР-защитное реле, ТС-температурный стабилизатор,Тр-терморегулятор, Н-противоконденсатное сопротивление, Эл-электролампа, Вл-выключатель лампы.

Электрическая схема автоматизации двухкамерного холодильника с температурным стабилизатором аналогична схеме, приведённой здесь. В отличии от электрической схемы автоматизации однокамерного холодильника при размыкании контактов термореле температурный стабилизатор включается, подогревает капилляр термореле, сокращая продолжительность стоянки компрессора. При этом перепад между температурами включения и выключения уменьшается. Постоянно включённый противоконденсатный электроподогреватель мощностью 15 вт. предохраняет от выпадания конденсата на наружную стенку камеры шкафа у дверного проёма морозильной камеры.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, ОЖ-отделитель жидкости, Кд-конденсатор.

Схема автоматизации с общим регулирующим устройством и отделителем жидкости исключает попадание жидкого фреона в компрессор. После дросселирования в регулирующем устройстве в испарителе низкотемпературной камеры происходит неполное испарение холодильного агента и в отделитель жидкости попадает парожидкостная смесь. Частицы жидкого агента, отделившись от паров, осаждаются в низкой части отделителя, а затем поступают в испаритель высокотемпературной камеры, где жидкость полностью выкипает. Пары холодильного агента из испарителя и верхней части отделителя жидкости отсасывается компрессором.

Компрессор управляется терморегулятором, капилляр которого прижат к испарителю низкотемпературной камеры. При схеме с одной температурой кипения в двух испарителях и двух испарителях поддержание разного температурного режима в двух камерах холодильника затруднительно.

Электрическая схема автоматизации аналогична схеме, двухкамерного холодильника с температурным стабилизатором. Отличие состоит в том, что в схеме отсутствует температурный стабилизатор.

Рассмотрим схемы автоматизации двухкамерных холодильников с разными температурами кипения фреона в испарителях.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, Др-дроссель, Кд-конденсатор.

В схеме автоматизации с общим регулирующим устройством перед высокотемпературным испарителем (ВТИ) и дросселем перед низкотемпературным испарителем (НТИ) холодильный агент дросселируется в регулирующем устройстве и заполняет ВТИ. Вторично понижая давление в дросселе «до себя», агент из ВТИ поступает в НТИ. Такая схема надёжно обеспечивает поддержание требуемых температур в каждой камере.

Электрическая схема этого холодильника аналогична схеме однокамерного холодильника.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, СВ-соленеидный вентиль, Кд-конденсатор, Тр1, Тр2-терморегуляторы.

В схеме автоматизации с подачей холодильного агента в каждый испаритель через самостоятельное регулирующее устройство работой компрессора управляет терморегулятор, капилляр которого закреплён на низкотемпературном испарителе. Работой солиноидного вентиля перед регулирующим устройством высокотемпературного испарителя управляет другой терморегулятор.

Электрическая схема такого холодильника приведена ниже.

ПО-пусковая обмотка двигателя, РО-рабочая обмотка двигателя, ПР-пусковое реле, ЗР-защитное реле, Тр1-терморегулятор камеры охлаждения, Тр2-терморегулятор морозильной камеры, СВ-соленоидный вентиль, Н-противоконденсатное сопротивление, Эл-электролампа, Вл-выключатель лампы.

При понижении температуры испарителя и соответственно воздуха в камере охлаждения контакты терморегулятора размыкаются, выключая соленоидный вентиль. Подача холодильного агента в высокотемпературный испаритель прекращается, однако компрессор продолжает работать, если замкнуты контакты терморегулятора низкотемпературного испарителя.

При понижении температуры испарителя и соответственно воздуха в морозильной камере контакты второго термореле, разрывая цепь питания электродвигателя компрессора. В схеме также имеется постоянно включенный противоконденсатный электроподогреватель.

Наиболее удачной, на мой взгляд, является схема автоматизации двухкамерного холодильника с общим регулирующим устройством и соленоидным вентилем.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, Др-дроссель, ОЖ-отделитель жидкости, РУ-регулирующее устройство, Км-компрессор,СВ-соленеидный вентиль, Кд-конденсатор, Тр1, Тр2-терморегуляторы.

В схеме использовано общее регулирующее устройство и отделитель жидкости. Перед высокотемпературным испарителем имеется дроссель «после себя». При закрытом соленоидном вентиле холодильный агент дросселируется в регулирующем вентиле и заполняет отделитель жидкости. Проходя затем через дроссель, холодильный агент заполняет испаритель в камере охлаждения, откуда поступает в испаритель морозильной камеры.

Когда ВТИ охладится до заданной температуры, его терморегулятор включает соленоидный вентиль. Холодильный агент, преодолевая меньшее гидравлическое сопротивление по сравнению дросселем, поступает в НТИ.

При охлаждении низкотемпературного испарителя до заданной температуры его терморегулятор останавливает компрессор.

Ниже приведены технологическая и электрическая схемы двухкамерного холодильника с автоматическим размораживанием испарителей парами холодильного агента.

а-технологическая схема: НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, СВ-соленеидный вентиль, Кд-конденсатор, Эн-электронагреватель.

б-электрическая схема: ПО-пусковая обмотка двигателя, РО-рабочая обмотка двигателя, ПР-пусковое реле, ЗР-защитное реле, Тр-терморегулятор , СВ-соленоидный вентиль, Н-нагреватель, Н1-температурный стабилизатор, ДФ-дефростатор.

Соленоидный вентиль автоматически включается при замыкании контактов дефростатора, которое происходит периодически с помощью электродвигателя дефростатора мощностью 2.5 вт, постоянно включенного в сеть. Одновременно включается электронагреватель.

Сжатые компрессором пары холодильного агента, минуя конденсатор, через соленоидный вентиль по специальной трубке поступают сначала в испаритель морозильной камеры, а затем в испаритель камеры охлаждения и подогревают их, вызывая таяние снеговой шубы. Пары фреона, отдавая тепло холодным стенкам испарителя, конденсируются. Во избежание попадания жидкого агента в компрессор его выпаривают электронагревателем, установленном на выходе из ВТИ.

После оттаивания снеговой шубы контакты дефростатора размыкаются с помощью электродвигателя. При этом выключается соленоидный вентиль и электронагреватель. При этом выключается сроленоидный вентиль и электродвигатель. Агрегат начинает работать в нормальном режиме, управляемый терморегулятором. Температурный стабилизатор, находящийся в цепи рабочей обмотки электродвигателя компрессора, выключается при размыкании контакта терморегулятора.

ПРИБОРЫ КИП ДЛЯ АХУ ЭЛЕКТРОМОНТАЖ НАЛАДКА ОБСЛУЖИВАНИЕ СРАВНЕНИЯ

В двухкамерном холодильнике для получения низкой температуры (в морозильном отделении или в отделении для хранения замороженных продуктов) и плюсовой температуры (в отделении для хранения свежих охлаждённых продуктов) применяют различные схемы автоматизации. Наиболее простой считается схема автоматизации с общим регулирующим устройством.

Схема автоматизации двухкамерного домашнего холодильника с общим регулирующим устройством: НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор.

Холодильный агент подаётся через одно регулирующее устройство сначала в испаритель низкотемпературного отделения, а затем в испаритель высокотемпературной камеры. При таком способе питания испарителей холодильным агентом в испарителе низкотемпературной камеры происходит неполное испарение агента и парожидкостная смесь холодильного агента поступает в испаритель высокотемпературной камеры, где поддерживается более высокая температура.

Работой компрессора управляет терморегулятор, капилляр которого контактирует с испарителем низко- или высокотемпературной камер. В последнем случае в морозильном отделении образуется большой перепад температур. Для снижения перепада на испарителе вблизи капилляра термореле часто устанавливают температурный стабилизатор, в качестве которого используют электрический нагреватель мощностью в 6-10 вт.

ПО-пусковая обмотка двигателя, РО-рабочая обмотка двигателя, , ЗР-защитное реле, ТС-температурный стабилизатор,Тр-терморегулятор, Н-противоконденсатное сопротивление, Эл-электролампа, Вл-выключатель лампы.

Электрическая схема автоматизации двухкамерного холодильника с температурным стабилизатором аналогична схеме, приведённой здесь. В отличии от электрической схемы автоматизации однокамерного холодильника при размыкании контактов термореле температурный стабилизатор включается, подогревает капилляр термореле, сокращая продолжительность стоянки компрессора. При этом перепад между температурами включения и выключения уменьшается. Постоянно включённый противоконденсатный электроподогреватель мощностью 15 вт. предохраняет от выпадания конденсата на наружную стенку камеры шкафа у дверного проёма морозильной камеры.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, ОЖ-отделитель жидкости, Кд-конденсатор.

Схема автоматизации с общим регулирующим устройством и отделителем жидкости исключает попадание жидкого фреона в компрессор. После дросселирования в регулирующем устройстве в испарителе низкотемпературной камеры происходит неполное испарение холодильного агента и в отделитель жидкости попадает парожидкостная смесь. Частицы жидкого агента, отделившись от паров, осаждаются в низкой части отделителя, а затем поступают в испаритель высокотемпературной камеры, где жидкость полностью выкипает. Пары холодильного агента из испарителя и верхней части отделителя жидкости отсасывается компрессором.

Компрессор управляется терморегулятором, капилляр которого прижат к испарителю низкотемпературной камеры. При схеме с одной температурой кипения в двух испарителях и двух испарителях поддержание разного температурного режима в двух камерах холодильника затруднительно.

Электрическая схема автоматизации аналогична схеме, двухкамерного холодильника с температурным стабилизатором. Отличие состоит в том, что в схеме отсутствует температурный стабилизатор.

Рассмотрим схемы автоматизации двухкамерных холодильников с разными температурами кипения фреона в испарителях.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, Др-дроссель, Кд-конденсатор.

В схеме автоматизации с общим регулирующим устройством перед высокотемпературным испарителем (ВТИ) и дросселем перед низкотемпературным испарителем (НТИ) холодильный агент дросселируется в регулирующем устройстве и заполняет ВТИ. Вторично понижая давление в дросселе «до себя», агент из ВТИ поступает в НТИ. Такая схема надёжно обеспечивает поддержание требуемых температур в каждой камере.

Электрическая схема этого холодильника аналогична схеме однокамерного холодильника.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, СВ-соленеидный вентиль, Кд-конденсатор, Тр1, Тр2-терморегуляторы.

В схеме автоматизации с подачей холодильного агента в каждый испаритель через самостоятельное регулирующее устройство работой компрессора управляет терморегулятор, капилляр которого закреплён на низкотемпературном испарителе. Работой солиноидного вентиля перед регулирующим устройством высокотемпературного испарителя управляет другой терморегулятор.

Электрическая схема такого холодильника приведена ниже.

ПО-пусковая обмотка двигателя, РО-рабочая обмотка двигателя, ПР-пусковое реле, ЗР-защитное реле, Тр1-терморегулятор камеры охлаждения, Тр2-терморегулятор морозильной камеры, СВ-соленоидный вентиль, Н-противоконденсатное сопротивление, Эл-электролампа, Вл-выключатель лампы.

При понижении температуры испарителя и соответственно воздуха в камере охлаждения контакты терморегулятора размыкаются, выключая соленоидный вентиль. Подача холодильного агента в высокотемпературный испаритель прекращается, однако компрессор продолжает работать, если замкнуты контакты терморегулятора низкотемпературного испарителя.

При понижении температуры испарителя и соответственно воздуха в морозильной камере контакты второго термореле, разрывая цепь питания электродвигателя компрессора. В схеме также имеется постоянно включенный противоконденсатный электроподогреватель.

Наиболее удачной, на мой взгляд, является схема автоматизации двухкамерного холодильника с общим регулирующим устройством и соленоидным вентилем.

НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, Др-дроссель, ОЖ-отделитель жидкости, РУ-регулирующее устройство, Км-компрессор,СВ-соленеидный вентиль, Кд-конденсатор, Тр1, Тр2-терморегуляторы.

В схеме использовано общее регулирующее устройство и отделитель жидкости. Перед высокотемпературным испарителем имеется дроссель «после себя». При закрытом соленоидном вентиле холодильный агент дросселируется в регулирующем вентиле и заполняет отделитель жидкости. Проходя затем через дроссель, холодильный агент заполняет испаритель в камере охлаждения, откуда поступает в испаритель морозильной камеры.

Когда ВТИ охладится до заданной температуры, его терморегулятор включает соленоидный вентиль. Холодильный агент, преодолевая меньшее гидравлическое сопротивление по сравнению дросселем, поступает в НТИ.

При охлаждении низкотемпературного испарителя до заданной температуры его терморегулятор останавливает компрессор.

Ниже приведены технологическая и электрическая схемы двухкамерного холодильника с автоматическим размораживанием испарителей парами холодильного агента.

а-технологическая схема: НТИ-низкотемпературный испаритель, ВТИ-высокотемпературный испаритель, РУ-регулирующее устройство, Км-компрессор, Тр-терморегулятор, СВ-соленеидный вентиль, Кд-конденсатор, Эн-электронагреватель.

б-электрическая схема: ПО-пусковая обмотка двигателя, РО-рабочая обмотка двигателя, ПР-пусковое реле, ЗР-защитное реле, Тр-терморегулятор , СВ-соленоидный вентиль, Н-нагреватель, Н1-температурный стабилизатор, ДФ-дефростатор.

Соленоидный вентиль автоматически включается при замыкании контактов дефростатора, которое происходит периодически с помощью электродвигателя дефростатора мощностью 2.5 вт, постоянно включенного в сеть. Одновременно включается электронагреватель.

Сжатые компрессором пары холодильного агента, минуя конденсатор, через соленоидный вентиль по специальной трубке поступают сначала в испаритель морозильной камеры, а затем в испаритель камеры охлаждения и подогревают их, вызывая таяние снеговой шубы. Пары фреона, отдавая тепло холодным стенкам испарителя, конденсируются. Во избежание попадания жидкого агента в компрессор его выпаривают электронагревателем, установленном на выходе из ВТИ.

После оттаивания снеговой шубы контакты дефростатора размыкаются с помощью электродвигателя. При этом выключается соленоидный вентиль и электронагреватель. При этом выключается сроленоидный вентиль и электродвигатель. Агрегат начинает работать в нормальном режиме, управляемый терморегулятором. Температурный стабилизатор, находящийся в цепи рабочей обмотки электродвигателя компрессора, выключается при размыкании контакта терморегулятора.

Принцип работы холодильника прост, но не всем понятен. В этой статье мы расскажем вам как он устроен и работает, какие их виды бывают и чем отличаются. Эту информацию необходимо знать не только при выборе холодильника!

Из этой статьи вы узнаете, чем отличается работа холодильника с одним и двумя компрессорами. Мы расскажем, как он устроен в зависимости от количества камер, чем отличается инверторный от обычного.

Кратко: принцип работы холодильника для чайников простыми словами

Холодильник не производит холод. Он работает в режиме теплового насоса. Принцип работы холодильника заключается в следующем: он перекачивает тепло из камеры в окружающую среду.

Для того чтобы выполнять такую задачу, в холодильнике присутствуют:

  • Компрессор (один или два);
  • Испаритель;
  • Конденсатор (наружный радиатор);
  • Хладагент, он же фреон.

Чтобы понять, как работает холодильник, вспомним курс физики. При испарении любая жидкость охлаждается. А при сжатии и конденсации нагревается. Для наглядности объясним вам как работает холодильник на примерах:

  1. Газообразный фреон с температурой +5 °С попадает в компрессор;
  2. Компрессор сжимает его так, чтобы он конденсировался в жидкость;
  3. При конденсации фреон нагревается до +40 градусов;
  4. После этого он под давлением попадает в конденсатор, где охлаждается до +25 °С;
  5. Фреон попадает в испаритель, где он расширяется и закипает, так как теперь не находится под давлением;
  6. Температура фреона падает до 0 градусов, он охлаждает камеру холодильника.
  7. В процессе отбора тепла у камеры, фреон нагревается до +5 °С;
  8. Цикл повторяется заново.

Все это возможно благодаря физическим свойствам хладагента. Температура кипения фреона гораздо ниже 0 градусов. поэтому он закипает и испаряется в испарителе. Все цифры мы привели для примера, чтобы вам было понятнее, как устроен холодильник. На деле цикл несколько сложнее.

Виды бытовых холодильников

По своему количеству камер холодильники делятся на:

  • Однокамерные;
  • Двухкамерные;
  • Многокамерные (три и более камер).

Также холодильник может иметь разное количество компрессоров. В обычных аппаратах используется один, но в некоторых моделях бывают два компрессора. От их количества и мощности зависит потребление электроэнергии холодильником.

Однокамерные холодильники

Это наиболее простой аппарат. Чаще в нем только одна камера для хранения продуктов, в которой поддерживается постоянная температура. Но существуют варианты с двумя отделениями – обычным и морозилкой.

Однокамерный холодильник имеет один испаритель. Более низкая температура в морозильной камере обеспечивается тем, что фреон сначала проходит через нее и немного нагревается. После этого он попадает в основной отсек.

Двухкамерные холодильники

В таких агрегатах есть обычная камера, отделенная от морозильной. Их отличие от однокамерных в том, что в каждом отсеке установлен свой испаритель. Это позволяет точно регулировать и поддерживать температурный режим. Двухкамерный холодильник может быть оснащен одним или двумя компрессорами.

Многокамерные холодильники

Такие модели довольно дороги и могут быть трех-, четырех- и пятикамерными. Как и в двухкамерных, в них есть морозильный отсек с минусовой температурой и обычный. Но в дополнение к ним есть отдельные отделения.

Оцените статью
Много толка
Добавить комментарий