Шестидесятеричная система счисления презентация

Шестидесятеричная система счисления презентация

Текст этой презентации

Тема «Системы счисления»

Введение
Современный человек в повседневной жизни постоянно сталкивается с числами и цифрами — они с нами везде. Различные системы счисления используются всегда, когда появляется потребность в числовых расчётах, начиная с вычислений учениками младших классов, выполняемых карандашом на бумаге, заканчивая вычислениями, выполняемыми на суперкомпьютерах.

Система счисления – это определённый способ представления чисел и соответствующие ему правила действия над ними. Цель создания системы счисления- выработка наиболее удобного способа записи количественной информации.
История систем счисления
Системы счисления
Позиционные
Непозиционные

Древние системы счисления:
Единичная система Древнегреческая нумерация Славянская нумерация Римская нумерация

Позиционные и непозиционные системы счисления
Непозиционные системы Позиционные системы
От положения цифры в записи числа не зависит величина, которую она обозначает. Величина, обозначаемая цифрой в записи числа, зависит от ее позиции. Основание – количество используемых цифр. Позиция – место каждой цифры.

Запись числа в позиционной системе счисления
Любое целое число в позиционной системе можно записать в форме многочлена: Хs=An · Sn-1 + An-1 · Sn-2 + An-2 · Sn-3 +. + A2 · S1 + A1 · S0 где S — основание системы счисления, А – цифры числа, записанного в данной системе счисления, n — количество разрядов числа. Так, например число 629310запишется в форме многочлена следующим образом: 629310=6·103 + 2·102 + 9·101 + 3·100

Примеры позиционных систем счисления:
Двоичная Система счисления с основанием 2, используются два символа — 0 и 1.
Восьмеричная Система счисления с основанием 8, используются цифры от 0 до 7.
Десятичная Система с основанием 10, наиболее распространённая система счисления в мире.
Двенадцатеричная Система с основанием 12. Используются цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B.
Шестнадцатеричная С основанием 16, используются цифры от 0 до 9 и латинские буквы от A до F для обозначения цифр от 10 до 15.
Шестидесятеричная Система с основанием 60, используется в измерении углов и, в частности, долготы и широты.

История двоичной системы счисления
Двоичная система счисления была придумана математиками и философами ещё до появления компьютеров (XVII — XIX вв.). Пропагандистом двоичной системы был знаменитый Г.В. Лейбниц. Он отмечал особую простоту алгоритмов арифметических действий в двоичной арифметике в сравнении с другими системами и придавал ей определенный философский смысл. В 1936 — 1938 годах американский инженер и математик Клод Шеннон нашёл замечательные применения двоичной системы при конструировании электронных схем.

Двоичная система счисления
Двоичная система счисления (бинарная система счисления, binary) — позиционная система счисления с основанием 2. Неудобством этой системы счисления является необходимость перевода исходных данных из десятичной системы в двоичную при вводе их в машину и обратного перевода из двоичной в десятичную при выводе результатов вычислений. Главное достоинство двоичной системы — простота алгоритмов сложения, вычитания, умножения и деления.

Сложение, вычитание, умножение и деление в двоичной системе счисления
Сложение Вычитание Умножение Деление
0 + 0 = 0; 0 + 1 = 1; 1 + 0 = 1; 1 + 1 = 10. 0 — 0 = 0; 1 — 0 = 1; 1 — 1 = 0; 10 — 1 = 1. 0 · 1 = 0; 1 · 1 = 1. 0 / 1 = 0; 1 / 1 = 1.

Двоичное кодирование в компьютере
В конце ХХ века, века компьютеризации, человечество пользуется двоичной системой ежедневно, так как вся информация, обраба- тываемая современными ЭВМ, хранится в них в двоичном виде. В современные компьютеры мы можем вводить текстовую информацию, числовые значения, а также графическую и звуковую информацию. Количество информации, хранящейся в ЭВМ, измеряется ее «длиной» (или «объемом»), которая выражается в битах (от английского binary digit – двоичная цифра).

Перевод чисел из одной системы счисления в другую
8
16

Заключение
Высшим достижением древней арифметики является открытие позиционного принципа представления чисел. Нужно признать важность не только самой распространенной системы, которой мы пользуемся ежедневно. Но и каждой по отдельности. Ведь в разных областях используются разные системы счисления, со своими особенностями и характерными свойствами.

Десятичная Двоичная Восьмеричная Шестнадцатеричная
1 001 1 1
2 010 2 2
3 011 3 3
4 100 4 4
5 101 5 5
6 110 6 6
7 111 7 7
8 1000 10 8
9 1001 11 9
10 1010 12 A
11 1011 13 B
12 1100 14 C
13 1101 15 D
14 1110 16 E
15 1111 17 F
16 10000 20 10

Перевод двоичного числа в десятичное
Для перевода двоичного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 2, и вычислить по правилам десятичной арифметики: Х10= Аn·2n-1 + Аn-1·2n-2 + Аn-2·2n-3 +…+А2·21 + А1·20
Перевод чисел

Читайте также:  Dead island epidemic обзор

Перевод восьмеричного числа в десятичное
Для перевода восьмеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 8, и вычислить по правилам десятичной арифметики: Х10= Аn·8n-1 + Аn-1·8n-2 + Аn-2·8n-3 +…+А2·81 + А1·80
Перевод чисел

Перевод шестнадцатеричного числа в десятичное
Для перевода шестнадцатеричного числа в десятичное необходимо его записать в виде многочлена, состоящего из произведений цифр числа и соответствующей степени числа 16, и вычислить по правилам десятичной арифметики: Х10= Аn·16n-1 + Аn-1·16n-2 + Аn-2·16n-3 +…+А2·161 + А1·160
Перевод чисел

Перевод десятичного числа в двоичную систему
Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке. Пример: Число 2210 перевести в двоичную систему счисления: 2210=101102
Перевод чисел

Перевод десятичного числа в восьмеричную систему
Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке. Пример: Число 57110 перевести в восьмеричную систему счисления: 57110=10738
Перевод чисел

Перевод десятичного числа в шестнадцатеричную систему
Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке. Пример: Число 746710 перевести в шестнадцатеричную систему счисления: 746710=1D2B16
Перевод чисел

Перевод чисел из двоичной системы в восьмеричную
Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой. При переводе необходимо пользоваться двоично-восьмеричной таблицей: Пример: Число 10010112 перевести в восьмеричную систему счисления: 001 001 0112=1138
2-ная 000 001 010 011 100 101 110 111
8-ная 0 1 2 3 4 5 6 7
Перевод чисел

Перевод из двоичной системы в шестнадцатеричную
Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр). Двоично-шестнадцатеричная таблица: Пример: Число 10111000112 перевести в шестнадцатеричную систему счисления: 0010 1110 00112=2E316
2-ная 0000 0001 0010 0011 0100 0101 0110 0111
16-ная 0 1 2 3 4 5 6 7
2-ная 1000 1001 1010 1011 1100 1101 1110 1111
16-ная 8 9 A B C D E F
Перевод чисел

Перевод восьмеричного числа в двоичное
Для перевода восьмеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной триадой. Пример: Число 5318 перевести в двоичную систему счисления: 5318=101 011 0012
2-ная 000 001 010 011 100 101 110 111
8-ная 0 1 2 3 4 5 6 7
Перевод чисел

Перевод шестнадцатеричного числа в двоичное
Для перевода шестнадцатеричного числа в двоичное необходимо каждую цифру заменить эквивалентной ей двоичной тетрадой. Пример: Число ЕЕ816 перевести в двоичную систему счисления: ЕЕ816=1110111010002
2-ная 0000 0001 0010 0011 0100 0101 0110 0111
16-ная 0 1 2 3 4 5 6 7
2-ная 1000 1001 1010 1011 1100 1101 1110 1111
16-ная 8 9 A B C D E F
Перевод чисел

Перевод из восьмеричной системы счисления в шестнадцатеричную и обратно
При переходе из восьмеричной системы счисления в шестнадцатеричную и обратно, необходим промежуточный перевод чисел в двоичную систему. Пример 1: Число FEA16 перевести в восьмеричную систему счисления: FEA16=1111111010102=111 111 101 0102=77528 Пример 2: Число 66358 перевести в шестнадцатеричную систему счисления: 66358=1101100111012=1101 1001 11012=D9D16
Перевод чисел

Единичная система
В древние времена, когда появилась потребность в записи чисел, количество предметов, изображалось нанесением черточек или засечек на какой-либо твердой поверхности. Археологами найдены такие «записи» при раскопках культурных слоев, относящихся к периоду палеолита (10–11 тысяч лет до н.э.). В такой системе применялся только один вид знаков – палочка. Каждое число обозначалось с помощью строки, составленной из палочек, количество которых равнялось обозначаемому числу.
Древние системы счисления

Аттическая нумерация
Ионийская система
В третьем веке до н.э. аттическая нумерация была вытеснена ионийской системой.
В древнейшее время в Греции была распространена аттическая нумерация.
Древние системы счисления

Читайте также:  Роутер asus n12 настройка iptv

Славянская нумерация
В России славянская нумерация сохранилась до конца XVII века. Южные и восточные славянские народы для записи чисел пользовались алфавитной нумерацией. Славянская нумерация сохранялась только в богослужебных книгах. Над буквой, обозначавшей цифру, ставился специальный значок: («титло»). Для обозначения тысяч перед числом (слева внизу) ставился особый знак .
Z
Древние системы счисления

Римская нумерация
Древние римляне пользовались нумерацией, которая сохраняется до настоящего времени под именем «римской нумерации». Мы пользуемся ей для обозначения веков, юбилейных дат, наименования съездов и конференций, для нумерации глав книги или строф стихотворения.
I — 1 V — 5 X — 10 L — 50 C — 100 D — 500 М — 1000
Запись цифр в римской нумерации:
Древние системы счисления

Ионийская система
Обозначение чисел в ионийской системе нумерации

Обозначение чисел в древнеславянской системе нумерации
Славянская нумерация

Слайд 2: Понятие :

Шестнадцатеричная система счисления — это позиционная система счисления с основанием 16. Для записи чисел в шестнадцатеричной системе используется 10 цифр от нуля до девяти (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) и латинские буквы A, B, C, D, E, F, обозначающие числа от 10 до 15. Таким образом, все символы шестнадцатеричной системы : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F

Слайд 3: История:

Шестнадцатеричная система счисления внедрена американской корпорацией IBM. Широко используется в программировании для IBM-совместимых компьютеров. Минимальной адресуемой (пересылаемой между компонентами компьютера) единицей информации является байт, состоящий, как правило, из 8 бит (англ. bit — binary digit — двоичная цифра, цифра двоичной системы), а два байта, то есть 16 бит, составляют машинное слово (команду). Таким образом, для записи команд удобно использовать систему с основанием 16.

Слайд 4: Применение:

Шестнадцатеричная система используется в цифровой электронике и компьютерной технике, в частности в низкоуровневом программировании на языке ассемблера для различных ЭВМ.

Слайд 5

Для шестнадцатеричной системы, как и для восьмеричной, характерен легкий перевод в двоичную систему счисления и обратно с помощью простой таблицы, в которой все цифры шестнадцатеричной системы от 0 до F(15) представлены в виде двоичных тетрод (четверок): 0 16 0000 2 1 16 0001 2 2 16 0010 2 3 16 0011 2 4 16 0100 2 5 16 0101 2 6 16 0110 2 7 16 0111 2 8 16 1000 2 9 16 1001 2 A 16 1010 2 B 16 1011 2 C 16 1100 2 D 16 1101 2 E 16 1110 2 F 16 1111 2. Виды переводов:

Слайд 6

Обратный перевод из шестнадцатеричной системы счисления в двоичную также прост. Для этого в двоичной записи числа нужно выделить тетроды (четверки) и заменить каждую тетроду соответствующей шестнадцатеричной цифрой. Отсчитывать тетроды нужно справа налево. В случае необходимости неполные тетроды дополняются нулями. Например: 1110111101 2 = 0011 1011 1101 2 = 3BD 16

Слайд 7: Использование 16-тиричной системы счисления:

Сейчас шестнадцатеричная система используется для обозначения цвета в языке гипертекстовой разметки HTML, графических программах. Чтобы задать определенный цвет применяются комбинации RGB-значения цвета (Red Green Blue — красный, зеленый, синий), записанные в шестнадцатеричном виде. Перед обозначением цвета ставят символ решетки (префикс). Например: # 7B917B — Первое число — 7B — отвечает за красную составляющую, второе — 91 — за зеленую и третье — 7B — за синюю.

Слайд 8: Синтаксис использования:

В различных системах и языках программирования используется разный синтаксис для обозначения шестнадцатеричных чисел. В ассемблерах используют букву h (от англ. hexadecimal ) в конце числа, например: 5A3h 16 = 1443 10, при этом, если число начинается не с цифры, а с буквы, впереди ставится 0, например: 0FFh 16 = 255 10, для того, чтобы отличать число от других идентификаторов. В Паскале (Pascal) и Бейсике (Basic) используют префикс $, например: «$5A3», в некоторых версиях Бейсика используется также сочетание «&h».

Слайд 9: Переводы:

В двоичную: В Десятеричную: В Восьмеричную:

Слайд 10: Правило перевода 10 – тичной :

Для перевода чисел из шестнадцатеричной системы счисления в десятичную сосчитаем количество разрядов шестнадцатеричного числа N и запишем степени шестнадцати от нулевой до N — 1 справа налево (помним, что каждая последующая степень получается умножением предыдущей на 16). Запишем под ними шестнадцатеричное число в прямом порядке. Умножим записанные числа на соответствующие им степени. Найдем сумму всех произведений. Результатом будет десятичное число, представленное в виде суммы различных степеней числа 16, умноженных на соответствующие коэффициенты.

Читайте также:  Defender avr initial 600va

Слайд 11: Пример:

Перевести число 21 16 в десятичную систему. Считаем число разрядов — 2, значит, нужно записать справа налево степени шестнадцати от нулевой до первой: 16 1 16 0 16 1 Запишем под степенями наше шестнадцатеричное число (слева направо, как есть): 16 1 2 1 Умножим числа на соответствующие степени шестнадцати и сложим их: 2 * 16 + 1 * 1 = 32 + 1 = 33, это и есть результат перевода: 21 16 = 33 10 Таким образом, шестнадцатеричное число 21 1 представлено в виде суммы ряда степеней числа 16 (основание шестнадцатеричной системы):

Слайд 12: И для общего кругозора:

С помощью специальной программы — шестнадцатеричного редактора чисел, можно просмотреть любой файл в виде набора байтов, представленных в шестнадцатеричном коде и внести определенные изменения. Это широко используется как для отладки, так и для взлома программ.

Презентация была опубликована 5 лет назад пользователемПотап Шуяков

Похожие презентации

Презентация на тему: » ИСТОРИЯ СИСТЕМ СЧИСЛЕНИЯ. Вавилонская шестидесятеричная система За две тысячи лет до нашей эры, в другой великой цивилизации – вавилонской – люди записывали.» — Транскрипт:

1 ИСТОРИЯ СИСТЕМ СЧИСЛЕНИЯ

2 Вавилонская шестидесятеричная система За две тысячи лет до нашей эры, в другой великой цивилизации – вавилонской – люди записывали цифры по-другому. Числа в этой системе счисления составлялись из знаков двух видов: Прямой клин Прямой клин (служил для обозначения единиц ) Лежачий клин Лежачий клин (для обозначения десятков) Число 60 Число 60 обозначалось знаком, что и 1

3 Для определения значения числа надо было изображение числа разбить на разряды справа налево. Чередование групп одинаковых знаков («цифр») соответствовало чередованию разрядов: Значение числа определяли по значениям составляющих его «цифр», но с учетом того, что «цифры» в каждом последующем разряде значили в 60 раз больше тех же «цифр» в предыдущем разряде.

4 1. Число Число 92 = записывали так: 2. Число Число 444 имело вид: НАПРИМЕР: 444 = 7* Число состоит из двух разрядов

5 Для определения абсолютного значения числа требовались дополнительные сведения. Впоследствии вавилоняне ввели специальный символ для обозначения пропущенного шестидесятичного разряда, что соответствует в десятичной системе появлению цифры 0 в записи числа Число 3632 записывалось так: В конце числа этот символ обычно не ставился. Таблицу умножения вавилоняне никогда не запоминали, т.к. сделать это было практически невозможно. При вычислениях они пользовались готовыми таблицами умножения.

6 Шестидесятеричная вавилонская Шестидесятеричная вавилонская система – первая известная нам система счисления, основанная на позиционном принципе. Система вавилонян сыграла большую роль в развитии математики и астрономии, ее следы сохранились до наших дней. Так, мы до сих пор делим час на 60 минут, а минуту на 60 секунд. Окружность мы делим на 360 частей (градусов).

7 РИМСКАЯ СИСТЕМА В римской системе для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M (соответственно), являющиеся «цифрами» этой системы счисления. Число в римской системе счисления обозначается набором стоящих подряд «цифр».

8 ЕдиницыДесяткиСотниТысячи 1I1I10 X100 C1000 M 2II20 XX200 CC2000 MM 3 III30 XXX300 CCC3000 MMM 4IV40 XL400 CD 5V5V50 L500 D 6VI60 LX600 DC 7VII70 LXX700 DCC 8VIII80 LXXX800 DCCC 9 IX90 XC900 CM Таблица обозначения чисел римскими цифрами

9 Календарь на каменной плите (3 – 4 вв.), найденный в Риме

10 ДЕСЯТИЧНАЯ СИСТЕМА СЧИСЛЕНИЯ Для записи чисел используются десять различных знаков: цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Некогда написание цифр было таким: Такое изображение десятичных цифр не случайно. Каждая цифра обозначает число, соответствующее количеству углов в ней.

11 ЯСАЧНЫЕ ГРАМОТЫ В старину на Руси среди простого народа широко применялись системы счисления, отдалённо напоминающие римскую. С их помощью сборщики податей заполняли квитанции об уплате подати – ясака (ясачные грамоты) и делали записи в податной тетради. копейка десять копеек один рубль десять рублей сто рублей 232 рубля 24 копейки

«>

Ссылка на основную публикацию
Adblock detector