Запоминающее устройство — носитель информации, предназначенный для записи и хранения данных. В основе работы запоминающего устройства может лежать любой физический эффект, обеспечивающий приведение системы к двум или более устойчивым состояниям.
Устройства хранения информации делятся на 2 вида:
внешние (периферийные) устройства
К внешним устройствам относятся магнитные диски, CD,DVD,BD,cтримеры,жесткий диск(винчестер),а также флэш-карта. Внешняя память дешевле внутренней, создаваемой обычно на основе полупроводников. Кроме того, большинство устройств внешней памяти может переноситься с одного компьютера на другой. Главный их недостаток в том, что они работают медленнее устройств внутренней памяти.
К внутренним устройствам относятся оперативная память, кэш-память, CMOS-память, BIOS. Главным достоинством является скорость обработки информации. Но в то же время устройства внутренней памяти довольно дорогостоящи.
НГМД (накопитель на гибких магнитных дисках)
Использование гибких дисков уходит в прошлое. Бывают двух типов и обеспечивают хранение информации на дискетах одного из двух форматов: 5,25′ или 3,5′. Дискеты формата 5,25′ в настоящее время практически не встречаются (максимальная емкость 1,2 Мб). Для дискет формата 3,5′ максимальная емкость составляет 2,88 Мб, самый распространенный формат емкости для них – 1,44 Мб. Гибкие магнитные диски помещаются в пластмассовый корпус. В центре дискеты имеется приспособление для захвата и обеспечения вращения диска внутри пластмассового корпуса. Дискета вставляется в дисковод, который вращается с постоянной угловой скоростью. Все дискеты перед употреблением форматируются – на них наносится служебная информация, обе поверхности дискеты разбиваются на концентрические окружности – дорожки, которые в свою очередь делятся на сектора. Одноименные сектора обеих поверхностей образуют кластеры. Магнитные головки примыкают к обеим поверхностям и при вращении диска проходят мимо всех кластеров дорожки. Перемещение головок по радиусу с помощью шагового двигателя обеспечивает доступ к каждой дорожке. Запись/чтение осуществляется целым числом кластеров, обычно под управлением операционной системы. Однако в особых случаях можно организовать запись/чтение и в обход операционной системы, используя напрямую функции BIOS. В целях сохранения информации гибкие магнитные диски необходимо предохранять от воздействия сильных магнитных полей и нагревания, так как такие воздействия могут привести к размагничиванию носителя и потере информации.
НЖМД (накопитель на жестких магнитных дисках)
Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного ПК. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью.Основные принципы работы жесткого диска мало изменились со дня его создания.Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли. Кроме того, корпус экранирует накопитель от электромагнитных помех.
Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже — из
керамики или стекла, покрытую тонким ферромагнитным слоем. Магнитные головки считывают и записывают информацию на диски. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Появление в 1999 г. изобретенных фирмой IBM головок с магниторезистивным эффектом (GMR – Giant Magnetic Resistance) привело к повышению плотности записи до 6,4 Гбайт на одну пластину в уже представленных на рынке изделиях.
Основные параметры жесткого диска:
Емкость – винчестер имеет объем от 40 Гб до 200 Гб.
Скорость чтения данных. Средний сегодняшний показатель – около 8 Мбайт/с.
Среднее время доступа. Измеряется в миллисекундах и обозначает то время, которое необходимо диску для доступа к любому выбранному вами участку. Средний показатель – 9 мс.
Скорость вращения диска. Показатель, напрямую связанный со скоростью доступа и скоростью чтения данных. Скорость вращения жесткого диска в основном влияет на сокращение среднего времени доступа (поиска). Повышение общей производительности особенно заметно при выборке большого числа файлов.
Размер кэш-памяти – быстрой буферной памяти небольшого объема, в которую компьютер помещает наиболее часто используемые данные. У винчестера есть своя кэш-память размером до 8 Мбайт.
Фирма-производитель. Освоить современные технологии могут только крупнейшие производители, потому что организация изготовления сложнейших головок, пластин, контроллеров требует крупных финансовых и интеллектуальных затрат. В настоящее время жесткие диски производят семь компаний: Fujitsu, IBM-Hitachi, Maxtor, Samsung, Seagate, Toshiba и Western Digital. При этом каждая модель одного производителя имеет свои, только ей присущие особенности.
Стримеры
лассическим способом резервного копирования является применение стримеров – устройств
записи на магнитную ленту. Однако возможности этой технологии, как по емкости, так и по скорости, сильно ограничены физическими свойствами носителя. Стример по принципу действия очень похож на кассетный магнитофон. Данные записываются на магнитную ленту, протягиваемую мимо головок. Недостатком стримера является слишком большое время последовательного доступа к данным при чтении. Емкость стримера достигает нескольких Гбайт, что меньше емкости современных винчестеров, а время доступа во много раз больше.
Flash-карта
Устройства, выполненные на одной микросхеме (кристалле) и не имеющие подвижных частей, основаны на кристаллах электрически перепрограммируемой флэш-памяти. Физический принцип организации ячеек флэш-памяти можно считать одинаковым для всех выпускаемых устройств, как бы они ни назывались. Различаются такие устройства по интерфейсу и применяемому контроллеру, что обусловливает разницу в емкости, скорости передачи данных и энергопотреблении.
Multimedia Card (MMC) и Secure Digital (SD) – сходит со сцены из-за ограниченной емкости (64 Мб и 256 Мб соответственно) и низкой скорости работы.
SmartMedia – основной формат для карт широкого применения (от банковских и проездных в метро до удостоверений личности). Тонкие пластинки весом 2 грамма имеют открыто расположенные контакты, но значительная для таких габаритов емкость (до 128 Мбайт) и скорость передачи данных (до 600 Кбайт/с) обусловили их проникновение в сферу цифровой фотографии и носимых МРЗ-устройств.
Memory Stick – “эксклюзивный” формат фирмы Sony, практически не используется другими компаниями. Максимальная емкость – 256 Мбайт, скорость передачи данных доходит до 410 Кбайт/с, цены сравнительно высокие.
CompactFlash (CF) – самый распространенный, универсальный и перспективный формат. Легко подключается к любому ноутбуку. Основная область применения – цифровая фотография. По емкости (до 3 Гбайт) сегодняшние CF-карты не уступают IBM Microdrive, однако отстают по скорости обмена данными (около 2 Мбайт/с).
USB Flash Drive – последовательный интерфейс USB с пропускной способностью 12 Мбит/с или его современный вариант USB 2.0 с пропускной способностью до 480 Мбит/с. Сам носитель заключен в обтекаемый компактный корпус, напоминающий автомобильный брелок. Основные параметры (емкость и скорость работы) полностью совпадают с CompactFlash, поскольку чипы самой памяти остались прежними. Может служить не только “переносчиком” файлов, но и работать как обычный накопитель – с него можно запускать приложения, воспроизводить музыку и сжатое видео, редактировать и создавать файлы. Низкое среднее время доступа к данным на Flash-диске – менее 2,5 мс. Вероятно, накопители класса USB Flash Drive, особенно с интерфейсом USB 2.0, в перспективе смогут полностью заменить собой обычные дискеты и частично – перезаписываемые компакт-диски, носители Iomega ZIP и им подобные.
PC Card (PCMCIA ATA) – основной тип флэш-памяти для компактных компьютеров. В настоящее время существует четыре формата карточек PC Card: Type I, Type II, Type III и CardBus, различающиеся размерами, разъемами и рабочим напряжением. Для PC Card возможна обратная совместимость по разъемам “сверху вниз”. Емкость PC Card достигает 4 Гб, скорость – 20 Мб/с при обмене данными с жестким диском.
Устройство, предназначенное для записи и хранения информации, называется носителем информации.
Примеры носителей: глиняная табличка, бумага, человеческая ДНК, $USB-Flash$ память.
Рассмотрим устройства хранения информации, называемые также запоминающими устройствами (ЗУ).
К основным параметрам запоминающих устройств относятся:
- информационная ёмкость (бит);
- потребляемая мощность;
- время хранения информации;
- быстродействие.
ЗУ делятся на внешние и внутренние устройства.
Внешние устройства хранения информации
Внешними являются устройства хранения информации, которые можно отсоединить от ПК и перенести на другой.
Главный недостаток: низкая скорость работы в отличие от внутренних устройств. Внешняя память предназначена для длительного хранения данных.
Накопители на гибких магнитных дисках (НГМД) уходят в прошлое. Выполнены в виде дискет двух форматов: $5.25»$ или $3.5»$. Максимальная емкость дискет формата $5.25» – 1,2$ Мб, в настоящее время не используются. Максимальная емкость дискет формата $3,5» – 2,88$ Мб, но самым распространенным форматом были дискеты емкостью $1,44$ Мб.
Попробуй обратиться за помощью к преподавателям
Накопители на жестких магнитных дисках (НЖМД) являются наиболее совершенными и сложными устройствами современных ПК. Такие диски могут хранить большие объемы, которую могут передавать с большой скоростью. Несмотря на эволюцию жестких дисков, основные принципы их работы практически не изменились.
Стримеры – устройства, предназначенные для записи информации на магнитную ленту. По принципу действия стримеры очень похожи на кассетный магнитофон: данные записываются на магнитную ленту, которая протягивается мимо головок. Возможности технологии сильно ограничены физическими свойствами носителя по емкости и по скорости.
Задай вопрос специалистам и получи
ответ уже через 15 минут!
Недостатки использования стримера:
- слишком большое время доступа к данным при чтении (во много раз превышает время доступа жестких дисков);
- емкость не превышает нескольких Гб, что меньше емкости современных жестких дисков.
Оптические диски.
CD (Compact Disc) – оптический носитель информации. Стандартный объем $700$ Мб. Запись и считывание информации осуществляется с помощью лазера.
DVD (Digital Versatile Disk) – оптический многоцелевой цифровой диск. Существуют односторонние и однослойные $DVD$ (стандартный объем $4,7$ Гб), а также двухсторонние или двухслойные диски с удвоенным объемом (объем увеличивается в $4$ раза и составляет более $17$ Гбайт).
BD (Blu-Ray Disc) – оптический носитель цифровых данных, который используется для записи и хранения информации и позволяет хранить видео высокой чёткости с повышенной плотностью.
Магнитно-оптический диск СD-MO (Compact Disk – Magneto Optical) – носитель информации, который сочетает свойства оптических и магнитных накопителей. Ёмкость диска от $128$ Мб до $2,6$ Гб.
Flash-карты – устройства, состоящие из одной микросхемы и не имеющие подвижных частей. Принцип работы основан на использовании кристаллов электрически перепрограммируемой флэш-памяти.
Физический принцип организации ячеек флэш-памяти одинаков для всех существующих устройств, как бы они ни назывались. Отличаются устройства интерфейсом и используемым контроллером, которые обусловливают разницу в емкости, скорости передачи данных и энергопотреблении.
Multimedia Card (MMC) и Secure Digital (SD) выходят из использования из-за небольшой емкости ($64$ Мб и $256$ Мб соответственно) и низкой скорости работы.
SmartMedia – основной формат для карт широкого использования (от банковских и проездных в метро до удостоверений личности). Выполнены в виде тонких пластинок весом $2$ гр и имеют открытые контакты. Для таких размеров имеют относительно значительную емкость (до $128$ Мбайт) и скорость передачи данных (до $600$ Кб/с), которые обусловили их проникновение в сферу цифровой фотографии и $MP3$-устройств.
USB Flash Drive – последовательный интерфейс $USB$ с пропускной способностью $12$ Мбит/с или его современный вариант $USB 2.0$ с пропускной способностью до $480$ Мбит/с.
PC Card (PCMCIA ATA) – карточка флэш-памяти для компактных ПК. Существует 4 формата карточек $PC Card: Type I, Type II, Type III и CardBus$, которые отличаются размерами, разъемами и рабочим напряжением. Емкость карточек достигает $4$ Гб, скорость обмена данными с жестким диском – $20$ Мбит/с.
Miniature Card (MC)– карточка флэш-памяти для карманных ПК, мобильных телефонов и цифровых камер. Стандартная емкость – $64$ Мб и больше.
Приведенный список не является полным, т.к. существуют большое количество самых разнообразных устройств хранения информации. Здесь приведены наиболее часто используемые.
Внутренние устройства хранения информации
Внутренними являются устройства хранения информации, непосредственно встроенные в системную плату ПК.
Главное достоинство: является скорость обработки информации.
Оперативная память (Random Access Memory – RAM, Оперативное Запоминающее Устройство – ОЗУ) – устройство хранения информации и программ, которые управляют процессом обработки информации.
Информация хранится в оперативной памяти только во время работы ПК (пока компьютер включен).
Кэш-память (Cash) – устройство хранения информации с очень коротким временем доступа к данным, встроенное в микросхему. Стандартный размер $256$ Кб или $512$ Кб, в мощных компьютерах до $1$Гб и выше.
CMOS-память (Complementary Metal – Oxide Semiconductor) – устройство для длительного хранения информации о конфигурации и настройке ПК (например, о дате, времени, паролях), в том числе и при выключенном питании ПК. Выполнена в виде специальной электронной схемы со средним быстродействием и очень низким энергопотреблением. Питается $CMOS$-память от специального аккумулятора (батарейки), который установлен на материнской плате. Это полупостоянная память.
BIOS (Basic Input/Output System – базовая система ввода-вывода) – постоянная память, в которую данные занесены при ее изготовлении.
$BIOS$ содержит функции для управления устройствами ПК, их тестирования при включении питания и осуществления начального этапа загрузки операционной системы ПК. В $BIOS$ содержится также программа настройки конфигурации компьютера, с помощью которой можно установить некоторые характеристики устройств ПК.
Так и не нашли ответ
на свой вопрос?
Просто напиши с чем тебе
нужна помощь
В основе функционирования любого типа компьютера лежит запоминающее устройство, способное сохранять информацию, использовать ее для расчетов и выдавать по первому требованию оператора.
Определение
Устройство хранения информации представляет собой приспособление, связанное с остальными элементами компьютера и способное воспринимать внешнее воздействие. В современных ЭВМ применяется сразу несколько типов подобных изделий, каждое из которых обладает собственной функциональностью и особенностями работы. Устройства хранения ключевой информации классифицируются по своим принципам работы, требованиям к энергообеспечению и по многим другим параметрам.
Действия с памятью
Главная задача любого записывающего приспособления заключается в возможностях работы с ним оператора. Все действия разделяются на три типа:
- Хранение. Вся информация, попавшая на записывающее устройство, обязана находиться там до удаления оператором или компьютером. Бывают изделия, способные хранить данные долгое время даже при выключенной ЭВМ. Именно так функционируют стандартные жесткие диски. Другие схожие изделия (оперативная память) содержат только часть данных, чтобы оператор получил к ним доступ максимально быстро.
- Ввод. Информация должна каким-то образом попадать на записывающее устройство. В данном случае разделение может идти по этому принципу. Одни модели работают напрямую с оператором. Другие связаны с иными запоминающими элементами, ускоряя их работу.
- Вывод. Полученные данные выводятся на интерфейс взаимодействия с пользователем или предоставляются для расчетов другим запоминающим приспособлениям.
Все устройства хранения, ввода и вывода информации тем или иным образом связаны в единую сеть в рамках одного компьютера. Все вместе они обеспечивают его работоспособность.
Форма
Классификация устройств хранения информации по форме записи разделяет их все на две категории: аналоговые и цифровые. Первые в современном мире практически не используются. Ближайшим примером аналогового записывающего устройство является кассета для магнитофона, которая уже давно устарела. Тем не менее некоторые разработки ведутся и в этом направлении. На данный момент уже есть несколько прототипов неплохих по емкости и скорости работы изделий такого типа, однако сравнительно с цифровыми устройствами они значительно проигрывают по стоимости производства. Стандартный жесткий диск для компьютера хранит информацию в виде единиц и нулей. Это цифровое записывающее устройство, как и подавляющее большинство современных изделий такого типа. В основе их функционирования лежит принцип сохранения физического состояния носителя в одной из двух возможных форм (для двоичной системы). Сейчас применяются и более современные варианты, способные использовать троичный или даже десятичный вид записи. Это стало возможно благодаря использованию уникальных свойств разных материалов и появлению новых технологий записи данных на накопители. Человечество постепенно увеличивает объем возможной для сохранения информации с одновременным уменьшеним размера носителя.
Устойчивость записи
Классификация по этому показателю разделяет все устройства хранения и обработки информации на четыре группы:
- Оперативные записывающие (ОЗУ). Оператор получает возможность вносить новую информацию, считывать уже имеющуюся и работать с ней прямо в процессе функционирования. Пример – оперативная память компьютера. В ней хранится большая часть постоянно запрашиваемых данных, благодаря чему не требуется постоянно обращаться к основному жесткому диску. В большинстве случаев вся информация стирается с таких носителей после отключения подачи энергии.
- Перезаписываемые (ПППЗУ). Такие изделия позволяют записывать, стирать и вновь вносить данные практически неограниченное количество раз. Пример – CD-RW и стандартные жесткие диски. В любом компьютере такой памяти больше всего, и именно на ней хранится практически вся информация пользователя.
- Записываемые (ППЗУ). На таких устройствах данные можно сохранить только один раз. Невозможно перезаписать или удалить информацию, что и является самым главным минусом подобных изделий. Пример – диски CD-R. В современном мире используется крайне редко.
- Постоянные (ПЗУ). Этот тип устройств сохраняет единожды записанную информацию и не позволяет как-либо ее удалять или изменять. Пример – BIOS компьютера. В нем все данные остаются без изменений и пользовать получает возможность выбрать только другие настройки из перечня существующих. В отличие от ППЗУ, на такие носители все же можно вносить новые данные, но, как правило, это требует полного удаления старых. То есть BIOS можно переустановить, но не дополнить или обновить.
Энергонезависимость
Для работы компьютеру требуется электроэнергия, без которой выполнение всех действий было бы невозможным. Однако если бы каждый раз после выключения ПК данные обо всей проделанной работе стирались, то значение ЭВМ в нашей жизни было бы значительно меньшим. Так какие устройства хранения информации по потребности в питании существуют?
- Энергозависимые. Эти изделия работают только тогда, когда есть к ним подано электричество. К такому типу относят стандартные модули оперативной памяти DRAM или SRAM.
- Энергонезависимые. Для сохранения информации записывающие устройства не требуют питания. Пример – жесткий диск компьютера.
Тип доступа
Устройства хранения информации разделяются также и по этому показателю. По типу доступа память бывает:
- Ассоциативной. Используется редко. К таким изделиям можно отнести специальные устройства, которые используются с целью повышения скорости работы обширных массивов данных.
- Прямой. Полный и неограниченный доступ предлагается жесткими дисками, которые относятся к этому типу доступа.
- Последовательной. Сейчас практически не используется. Ранее применялся в магнитных лентах.
- Произвольной. По такому принципу работает оперативная память, предоставляющая пользователю возможность в произвольной форме получить доступ к последней информации, с которой работала система. Применяется для ускорения работы компьютера.
Исполнение
Устройства, предназначенные для хранения информации, имеют классификацию по типу исполнения.
- Печатные платы. К такому виду относятся модули оперативной памяти и картриджи для старых приставок. Работают очень быстро, однако нуждаются в постоянной подаче энергии, из-за чего их текущее применение носит вспомогательную роль.
- Дисковые. Бывают магнитными и оптическими. Самым популярным представителем считается жесткий диск компьютера. Используются в качестве основного носителя информации.
- Карточные. Вариантов исполнения много. Из последних можно отметить флеш-карты. Ранее этот тип применялся для изготовления перфокарт и их магнитных аналогов.
- Барабанные. Пример – магнитный барабан. Практически не используется.
- Ленточные. Пример – перфорированные или магнитные ленты. В современном мире почти не встречается.
Физический принцип
По физическому принципу работы устройства ввода, вывода, хранения и обработки информации разделяются на:
- Магнитные. Выполняются в виде сердечников, дисков, лент или карт. Пример – жесткий диск. Это не самый быстрый способ обработки информации, однако он позволяет долгое время хранить данные без подачи энергии, что и обеспечивает их текущую популярность.
- Перфорационные. Изготавливаются как ленты или карты. Пример – старинная перфокарта, используемая для записи информации в первых моделях ЭВМ. Из-за сложности изготовления и небольшого количества хранимых данных сейчас такой принцип практически не используется.
- Оптические. CD-диски любого вида. Все они работают на принципе отражения света от своей поверхности. Лазер прожигает дорожки, образуя участки, отличающиеся от общей массы, что позволяет использовать все ту же систему двоичного кода, в которой одно состояние диска обозначается единицей, а другое – нулем.
- Магнитооптические. Диски типа MO. Используются редко, но сочетают в себе преимущества обеих систем.
- Электростатические. Работают по принципу накопления заряда электричества. Примеры – ЭЛТ, конденсаторные запоминающие устройства.
- Полупроводниковые. Используют особенности одноименных материалов для сбора и хранения данных. Так работает флеш-накопитель.
Помимо всего прочего, существуют запоминающие устройства, работающие по другим физическим принципам. Например, на сверхпроводимости или звуке.
Количество состояний
Последним вариантом классификации устройства долговременного хранения информации является то, сколько состояний оно может поддерживать. Как уже было сказано выше, цифровые носители работают за счет изменения своей физической части на основе поданной электроэнергии. Самый простой пример: если магнитится, значит, это равно цифре 1, если нет, значит – 0. Это принцип работа двоичных систем, которые способны поддерживать только два варианта состояния. Сейчас также используются устройства, работающие в трех и более формах. Это открывает очень широкие перспективы использования носителей данных, позволяет уменьшать их размер, одновременно с увеличением общего объема хранимой информации.
Итоги
Старые накопители были очень большими. Самые первые компьютеры требовали помещения, сравнимого с современными спортивными залами, да еще при этом работали очень медленно. Прогресс не стоит на месте и сейчас устройства хранения информации, даже самые объемные, можно просто положить в карман. Дальнейшее развитие может пойти как по пути поиска новых материалов или способов взаимодействия со старыми, так и по направлению создания постоянной и стабильной связи по всему миру. В таком случае емкие накопители будут расположены в специальных серверных, а все данные пользователь будет получать по «облачной» технологии.