Сторона правильного треугольника через высоту

Какими свойствами обладает высота равностороннего треугольника? Как найти высоту равностороннего треугольника через его сторону, радиусы вписанной или описанной окружностей?

(свойство высоты равностороннего треугольника)

В равностороннем треугольнике высота, проведённая к любой стороне, является также его медианой и биссектрисой.

Доказательство :

Пусть в треугольнике ABC AB=BC=AC.

Так как AB=BC, треугольник ABC равнобедренный с основанием AC.

Проведём высоту BF.

По свойству равнобедренного треугольника, BF является также его медианой и биссектрисой

(то есть, AF=FC, ∠ABF=∠CBF).

Аналогично, рассмотрев треугольник ABC как равнобедренный с основанием BC и треугольник ABC — равнобедренный с основанием AB, доказываем, что высоты AK и CD являются также его медианами и биссектрисами

(то есть, BK=KC, ∠BAK=∠CAK; AD=BD, ∠ACD=∠BCD).

Что и требовалось доказать .

(свойство высот равностороннего треугольника)
Все три высоты равностороннего треугольника равны между собой.

Пусть в треугольнике ABC AB=BC=AC.

AK, BF и CD — его высоты.

В прямоугольных треугольниках ABF, BCD и CAK:

гипотенузы AB, BC и CA равны по условию,

∠BAF=∠CBD=∠ACK (как углы равностороннего треугольника).

Следовательно, треугольники ABF, BCD и CAK равны (по гипотенузе и острому углу).

Из равенства треугольников следует равенство соответствующих сторон: BF=CD=AK.

Что и требовалось доказать .

Из теорем 1 и 2 следует, что в равностороннем треугольнике все высоты, медианы и биссектрисы равны между собой.

1) Найдём высоту равностороннего треугольника через его сторону.

В треугольнике ABC AB=BC=AC=a.

Рассмотрим прямоугольный треугольник ABF.

Отсюда формула высоты равностороннего треугольника через его сторону:

(2-й способ: из прямоугольного треугольника ABF по теореме Пифагора

2) Выразим высоту равностороннего треугольника через радиусы вписанной и описанной окружностей.

Точка O — центр правильного треугольника — является также центром его вписанной и описанной окружностей. Как центр вписанной окружности O — точка пересечения биссектрис треугольника. В правильном треугольнике биссектрисы и медианы совпадают. Следовательно, также является O точкой пересечения медиан.

А так как медианы треугольника в точке пересечения делятся в отношении 2 к 1, считая от вершины, то BO:OF=2:1, то есть

Читайте также:  Как из дроби сделать целое число

BO — радиус описанной окружности, OF — вписанной: BO=R, OF=r.

Следовательно, высота равностороннего треугольника равна трём радиусам вписанной окружности:

и в полтора раза больше радиуса описанной окружности:

Что такое равносторонний треугольник?

Для начала нужно вспомнить, что такое равносторонний треугольник, определить некоторые его свойства и только тогда выводить формулу высоты.

Равносторонний треугольник – это треугольник, все стороны которого равны между собой. Все углы в таком треугольнике равны между собой (60 градусов).

Рис. 1. Правильный треугольник.

Равносторонний треугольник является равнобедренным, но основанием можно считать любую часть треугольника.

Формула

Формулу высоты равностороннего треугольника выведем тремя способами: через теорему Пифагора, с помощью формулы площади прямоугольного треугольника и через тригонометрическую функцию. Три способа используем, чтобы показать несколько вариантов доказательства и иметь возможность максимально быстро найти значение высоты при любом условии задачи.

Рис. 2. Рисунок к доказательству.

Сначала выведем формулу через площадь.

В классической формуле, подходящей для любого треугольника, площадь равна половине произведения основания на высоту. Существует также формула площади для правильного треугольника: $S=sqrt<3>*$

Приравняем две формулы и выведем формулу высоты.

$<1over2>*a*h=sqrt<3>* $ – сократим обе части на а.

$H=sqrt<3>*$ – и получим формулу высоты равностороннего треугольника.

С другой стороны, в равностороннем треугольнике высота, проведенная к основанию, является медианой и высотой. То есть, высоту можно найти как катет прямоугольного треугольника через теорему Пифагора.

Рис. 3. Рисунок к доказательству.

Если в том же малом прямоугольном треугольнике обратить внимание на известный острый угол, то можно вывести значение высоты через синус угла в 60 градусов.

Синус – это отношение противолежащего катета к гипотенузе.

Воспользуемся этим отношением и выразим высоту.

$h=a*sin(60)=<3>over<2>>$ – как видно, получился тот же результат, что и в первом способе. Это говорит о том, что в равностороннем треугольнике только две формулы высоты, а все остальные способы доказательства можно свести к получившимся выводам.

Читайте также:  Как поделиться контактом в скайпе

Что мы узнали?

Мы узнали, что такое равносторонний треугольник, вывели несколько формул для нахождения высоты равностороннего треугольника. Показали несколько путей вывода формул, которые могут помочь быстро вспомнить, как находится высота или использовать те же приемы для нахождения других величин в равностороннем треугольнике.

Тест по теме

Оценка статьи

Средняя оценка: 4.7 . Всего получено оценок: 183.

Не понравилось? — Напиши в комментариях, чего не хватает.

Содержание

  1. Что такое равносторонний треугольник?
  2. Формула
  3. Что мы узнали?

Бонус

    Тест по теме
  • Площадь прямоугольного треугольника
  • Высота треугольника
  • Площадь правильного треугольника
  • Площадь прямого треугольника
  • Площадь равностороннего треугольника
  • Площадь равнобедренного треугольника
  • Медиана треугольника
  • Правильный треугольник
  • Тупоугольный треугольник
  • Остроугольный треугольник
  • Свойства прямоугольного треугольника
  • Стороны прямоугольного треугольника
  • Средняя линия прямоугольного треугольника
  • Признаки подобия прямоугольных треугольников Высота равностороннего треугольника
  • Медиана равностороннего треугольника
  • Неравенство треугольника
  • Длина медианы правильного треугольника
  • Равнобедренный тупоугольный треугольник
  • Средняя линия прямоугольного треугольника
  • Длина средней линии треугольника

показать все

По многочисленным просьбам теперь можно: сохранять все свои результаты, получать баллы и участвовать в общем рейтинге.

  1. 1. Алина Сайбель 1,833
  2. 2. Игорь Проскуренко 556
  3. 3. Денки Каминари 362
  4. 4. Богдан Зайцев 313
  5. 5. Роман Гончаренко 275
  6. 6. Виктория Мирославская 228
  7. 7. Полина Кулишенко 200
  8. 8. Кирилл Иванов 198
  9. 9. Виктория Кирьянова 149
  10. 10. Александр Максимов 146
  1. 1. Мария Николаевна 14,245
  2. 2. Лариса Самодурова 13,785
  3. 3. Кристина Волосочева 13,755
  4. 4. Ekaterina 13,556
  5. 5. Liza 13,260
  6. 6. Юлия Бронникова 13,185
  7. 7. Алина Сайбель 13,104
  8. 8. Darth Vader 12,791
  9. 9. TorkMen 12,566
  10. 10. Влад Лубенков 12,025

Самые активные участники недели:

  • 1. Виктория Нойманн — подарочная карта книжного магазина на 500 рублей.
  • 2. Bulat Sadykov — подарочная карта книжного магазина на 500 рублей.
  • 3. Дарья Волкова — подарочная карта книжного магазина на 500 рублей.
Читайте также:  Как вернуть стандартные настройки виндовс 10

Три счастливчика, которые прошли хотя бы 1 тест:

  • 1. Наталья Старостина — подарочная карта книжного магазина на 500 рублей.
  • 2. Николай З — подарочная карта книжного магазина на 500 рублей.
  • 3. Давид Мельников — подарочная карта книжного магазина на 500 рублей.

Карты электронные(код), они будут отправлены в ближайшие дни сообщением Вконтакте или электронным письмом.

Равносторонний треугольник является правильным многоугольником (геометрическая фигура, у которой все углы и все стороны равны). Фактически, это значительно упрощает процесс вычисления любых параметров, характеризующих такой треугольник, в том числе, длину высоты.

В равностороннем треугольнике все три высоты — одинаковой длины, поэтому найдя любую из них, можно применять полученное значение в отношении всех трех линий. Более того, все высоты полностью совпадают со всеми тремя медианами, биссектрисами и серединными перпендикулярами, называемыми иначе медиатриссами. Точка пересечения всех трех линий обладает свойствами точки пересечения высот, точки пересечения медиан и точки пересечения биссектрис одновременно, являя собой любой из возможных центров треугольника, в том числе центр вписанной и описанной окружностей.

Исходя из этого, чтобы найти высоту равностороннего треугольника, можно использовать абсолютно любые известные параметры, например, сторону треугольника.

Высота равностороннего треугольника, проведенная к любой стороне, создает внутри него прямоугольный треугольник, в котором можно ее вычислить, используя тригонометрические отношения, так как известно, что все углы в равностороннем треугольнике имеют по 60 градусов. Для полученного прямоугольного треугольника высота будет катетом, противолежащем углу в 60 градусов, а сторона равностороннего треугольника — гипотенузой, соответственно, чтобы найти высоту, нужно применить синус. Если подставить вместо угла альфа 60 градусов, получится, что высота равностороннего треугольника равна половине стороны, умноженной на корень из трех.

Ссылка на основную публикацию
Adblock
detector