Проекция силы на ось – это алгебраическая величина, равная произведению модуля силы на косинус угла между положительным направлением оси и вектором силы (т.е. это отрезок, откладываемый силой на соответствующие оси. Рисунок 1.13):
Проекция силы на ось может быть положительной, рис. 1.13а ( 0 ≤ α β = π/2) и отрицательной, рис. 1.13в ( π/2 Pz = P ∙ sinα;
Px = (P ∙ cosα)cosβ;
Py = (P ∙ cosα)cosγ = P ∙ cosα ∙ cos(90 o — β).
усть линия действия силыF лежит в плоскости OXY (рис. 1.25).
По правилу параллелограмма разложим эту силу на составляющие силы FОХ, FOY по координатным осям OX и OY. Силы FOX, FOY называют компонентами силы F по координатным осям OX и OY. Очевидно векторное равенство
Спроецируем компоненты FOX, FOY силы F на координатные оси и получим скалярные величины FOX, FOY, которые называют проекциями силы на оси OX и OY.
Компоненты силы и её проекции на координатные оси связаны равенствами: FOX = iFOX; FOY = jFOY.
Проекция силы на ось – скалярная величина, равная взятой со знаком плюс или минус длине отрезка, заключённого между проекциями на ось начала и конца силы.
усть в пространстве в системе отсчёта OXYZ задана силаF, (рис. 1.26).
Используя правило параллелепипеда, разложим силу F на компоненты FOX, FOY, FOZ. По правилу сложения векторов справедливо равенство
Последнее равенство представляет собой формулу разложения силы на составляющие силы по координатным осям.
Проекция силы на координатную ось равна произведению модуля силы на косинус угла, составленного направлениями силы и оси.
Модуль силы через её проекции определяют по формуле
.
Направляющие косинусы, используемые для определения направления силы, находят по формулам:
Если рассматривается сила, лежащая в плоскости OXY, то применяются формулы:
;
ри определении проекции силы на ось возможны следующие частные случаи (рис. 1.27).
Анализ частных случаев определения проекции силы на ось позволяет сделать следующие выводы: 1) если сила и ось направлены в одну полуплоскость, то проекция силы на ось положительна; 2) если сила и ось направлены в разные полуплоскости, то проекция силы на ось отрицательна; 3) если сила и ось взаимно перпендикулярны, то проекция силы на ось равна нулю; 4) если сила и ось параллельны, то сила проецируется на ось в натуральную величину с соответствующим знаком.
При решении задач статики рекомендуется вычислять абсолютное значение проекции как произведение модуля силы на косинус острого угла между линией действия силы и осью, определяя знак проекции непосредственно по чертежу.
инженерной практике принято использовать заданный угол и выражать через него проекции силы на оси (рис. 1.28).
Проекцией силы на плоскость OXY называется вектор FOXY, заключенный между проекциями начала и конца силы F на эту плоскость (рис. 1.29).
Таким образом, в отличие от проекции силы на ось, проекция силы на плоскость есть величина векторная, так как она характеризуется не только модулем, но и направлением по плоскости OXY. По модулю FОXY = F·cos(), где – угол между направлением силы F и её проекцией FOXY,
В некоторых случаях для нахождения проекции силы на ось бывает удобнее найти сначала её проекцию на плоскость, в которой эта ось лежит, а затем найденную проекцию силы на плоскость спроецировать на данную ось. Тогда:
Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников сопряжено с громоздкими построениями. Универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление.
Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.
Проекция вектора считается положительной, если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной, если направление от начала проекции к ее концу противоположно положительному направлению оси.
Таким образом, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.
Рассмотрим ряд случаев проецирования сил на ось:
Вектор силы F (рис. 15) составляет с положительным направлением оси х острый угол .
Чтобы найти проекцию, из начала и конца вектора силы опускаем перпендикуляры на ось oх; получаем
Проекция вектора в данном случае положительна
Сила F (рис. 16) составляет с положительным направлением оси х тупой угол α.
Тогда Fx = F cos α, но так как α = 180 0 — φ,
Проекция силы F на ось oх в данном случае отрицательна.
Сила F (рис. 17) перпендикулярна оси oх.
Проекция силы F на ось х равна нулю
Силу, расположенную на плоскости хоу (рис. 18), можно спроектировать на две координатные оси ох и оу.
Силу F можно разложить на составляющие: Fx и Fy. Модуль вектора Fx равен проекции вектора F на ось ox, а модуль вектора Fy равен проекции вектора F на ось oy.
Модуль силы можно найти по теореме Пифагора:
Проекция векторной суммы или равнодействующей на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.
Рассмотрим сходящиеся силы F1, F2, F3, и F4, (рис. 19, а). Геометрическая сумма, или равнодействующая, этих сил F определяется замыкающей стороной силового многоугольника
Опустим из вершин силового многоугольника на ось x перпендикуляры.
Рассматривая полученные проекции сил непосредственно из выполненного построения, имеем
где n — число слагаемых векторов. Их проекции входят вышеуказанное уравнение с соответствующим знаком.
В плоскости геометрическую сумму сил можно спроецировать на две координатные оси, а в пространстве – соответственно на три.