Транспортная задача на максимум

Транспортная задача на максимум

Данный онлайн калькулятор решает транспортную задачу. Дается подробное решение с пояснениями. Для решения транспортной задачи задайте количество подставщиков и количество магазинов. Затем введите данные в ячейки и нажимайте на кнопку "Вычислить". Теоретическую часть смотрите на странице Транспортная задача. Методы решения.

Задача 3

В хозяйстве возделываются следующие кормовые культуры: свекла – 180 га, кукуруза – 340 га, подсолнечник – 210 га, однолетние травы – 290 га. Посевы культур можно разместить на четырех участках, площадь которых составляет 160, 250, 320, 290 гектар. Известна урожайность культур с одного гектара на различных участках. Требуется распределить посевы культур по участкам земли таким образом, чтобы валовой сбор кормов был максимальным.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 9987 — | 7777 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

4.Лекция. Транспортная задача

4. 1 Постановка задачи. Математическая модель

Однородный груз сосредоточен у m поставщиков в объемах а1, а2, …, аm.

Известен Сij (i= 1, 2, … , m; j=1, 2 ,…, n) – стоимости перевозки единицы груза от каждого i-го поставщика каждому j-му потребителю.

Требуется составить такой план перевозок, при котором запасы всех поставщиков вывозятся полностью, запросы всех потребителей удовлетворяются полностью и суммарные затраты на перевозку всех грузов минимальны.

Исходные данные транспортной задачи записываются в таблице вида:

Переменными (неизвестным) транспортной задачи являются xij (i=1,2,…,m; j=1,2,…,n) – объемы перевозок от каждого i-го поставщика j-му потребителю. Эти переменные могут быть записаны в виде матрицы перевозок.

Математическая модель транспортной задачи

Математическая модель транспортной задачи в общем виде имеет вид:

Читайте также:  В прямом параллелепипеде с высотой 15

Целевая функция задачи Z(X) выражает требование обеспечить минимум суммарных затрат на перевозку всех грузов. Вторая группа из уравнений ограничений записанных в общем виде, выражает требование, что запасы всех m, поставщиков вывозятся полностью, а также полностью должны удовлетворятся запросы всех n потребителей. Последнее неравенство является условием неотрицательности всех переменных.

В рассмотренной математической модели транспортной задачи предполагается, что суммарные запасы поставщиков равны суммарным запросам потребителей, т.е.

такая задача называется сбалансированной, а её модель закрытой. Если же это равенство не выполняется, то задача называется несбалансированной (с неправильным балансом), а её модель – открытой.

Для того чтобы транспортная задача линейного программирования имела решение, необходимо, чтобы суммарные запасы поставщиков равнялись суммарным запросам потребителей, т.е. задача должна быть сбалансированной.

Математическая модель двойственной задачи:

если целевая функция Z’ стремится к минимуму то в системе ограничении меняется знак: экономический смысл перемененных двойственной задачи:

Ui – условная оценка i-го поставщика (условная плата поставщика перевозчику);

Vj – условная оценка j-го потребителя (условная плата потребителя перевозчику).

1.Если задача открыта, то необходимо добавить фиктивного поставщика или потребителя с недостающим объемом поставки и нулевой стоимостью перевозки. Распределение поставки фиктивному потребителю (поставщику), идет в последнюю очередь.

2.Клетка в плане перевозок называется базисной (закрытой), если в нее ставится перевозка.

3.Количество базисных клеток определяется соотношением r=m+n-1. опорное решение не может иметь базисных клеток больше, чем r.

4.План называется вырожденным, если количество базисных клеток меньше r, т.е. базисных клеток не хватает при выполненном условии, что объем поставок поставщиков распределен полностью и спрос потребителей также удовлетворен. В этом случае необходимо добавить нулевую перевозку.

5.Если в задаче указана не только стоимость перевозки, но и стоимость производства товара, тогда необходимо сложить эти стоимости с учетом перевозки товара от i-го поставщика j-му потребителю. Кроме того, математическая модель составляется с учетом этой суммарной стоимости.

Читайте также:  Манимен промокод 50 процентов

4. 2 Алгоритм решения транспортных задач.

1.Составить опорный план, т.е. начальное приближение.

2.Составить математическую модель исходной прямой и математическую модель двойственной задач.

3.Пользуясь методом наименьшего (наибольшего) элемента и методом потенциалов найти улучшение исходного опорного плана до тех пор, пока он не будет удовлетворять условию оптимальности.

4.2.1 Метод наименьшего элемента.

1.Сбалансировать задачу (убедиться, что задача сбалансирована).

2.Определить свободную клетку с наименьшей стоимостью перевозки. Если таких клеток несколько, то выбрать клетку с наибольшей потенциальной грузоперевозкой. Если и таких клеток несколько, то выбирается любая из этих клеток.

3.В выбранную клетку поставить максимально возможную грузоперевозку для потребителя от поставщика.

4.Проверить, остался ли нераспределенным груз у этого поставщика.

5.Если груз распределен не полностью, то применяем п.2 относительно строки этого поставщика. Продолжать до тех пор, пока груз этого поставщика будет полностью распределен.

Если груз поставщика распределен полностью, проверить, полностью ли удовлетворен объем потребителя.

Если потребитель полностью удовлетворен, то применить пункт 2 относительно оставшихся поставщиков и потребностей в таблице.

Если объем потребителя полностью не удовлетворен, тогда применяется пункт 2 относительно соответствующего столбца.

6.Проверить план на вырожденность. Количество базисных клеток должно быть равным r=m+n-1.

Если план вырожденный, то поставить фиктивное значение груза так, чтобы иметь возможность найти потенциалы всех базисных клеток (ставить нулевую перевозку).

7.Проверить на оптимальность и по возможности дальше улучшить, перейдя к методу потенциалов.

4.2.2 Метод потенциалов.

1.Для всех базисных клеток создать систему уравнений вида .

Выбрать переменную Ui или Vj, которой соответствует наибольшее количество занятых клеток, приравнять её к нулю, решить систему уравнений относительно Ui и Vj и найти эти значения.

2.Для всех свободных клеток составить и проверить выполнение неравенств:

Условия оптимальности: если для всех свободных клеток выполняется это неравенство, то тогда найден оптимальный план.

Читайте также:  Htc desire 816 обзор

Если хотя бы для одной клетки не выполняется это неравенство, то необходимо улучшить опорный план с помощью коэффициента перераспределения W.

3.Находим клетку, где сильнее всего не выполняется неравенство. Если таких клеток несколько, то выбирается любая. В эту клетку ставим W со знаком «+».

4.Построить контур перераспределения груза, начиная с выбранной клетки, исходя из следующих правил:

-В строке и столбце должно быть четное число W;

-Контур меняет направление только в базисных клетках;

-Коэффициент W меняет свой знак с «+» на «-» поочередно в углах контура.

5.После построения контура отметить, в каких базисных клетках коэффициент W стоит с отрицательным знаком. Из этих клеток найти клетку с наименьшим значением перевозки, коэффициент W будет равен перевозке в выбранной клетке.

6.Найти новый план, перераспределив найденное значение W по контуру с учетом знаков «+» и «-», прибавляя или уменьшая стоящую в клетке перевозку.

7.Проверить новый план в соответствии в п.2, если неравенства для свободных клеток выполняются, значит найденный план оптимален.

Если в математической модели целевая функция прямой задачи на максимум (Zmax), то задача решается методом максимального элемента. т.е. грузоперевозка (Xij) распределяется при составлении опорного плана с учетом наибольшего значения Cij аналогично алгоритма метода наименьшего элемента. В методе потенциалов проверяется выполнение неравенства .

4. 3 Примеры решения транспортных задач.

Условие: Студенческие отряды СО-1, СО-2 и СО-3 численностью 70, 99 и 80 человек принимают участие в сельскохозяйственных работах. Для уборки картофеля на полях П1, П2, П3 и П4 необходимо выделить соответственно 47, 59, 49 и 43 человека. Производительность труда студентов зависит от урожайности картофеля, от численности отряда и характеризуется для указанных отрядов и полей в центнерах на человека за рабочий день и представлена в матрице:

Ссылка на основную публикацию
Adblock detector