Закон де моргана информатика

Закон де моргана информатика

Законы де Мо́ргана (правила де Мо́ргана) — логические правила, связывающие пары логических операций при помощи логического отрицания. Названы в честь шотландского математика Огастеса де Моргана. В краткой форме звучат так:

Отрицание конъюнкции есть дизъюнкция отрицаний. Отрицание дизъюнкции есть конъюнкция отрицаний.

Содержание

Определение [ править | править код ]

Огастес де Морган первоначально заметил, что в классической пропозициональной логике справедливы следующие соотношения:

не (a и b) = (не a) или (не b) не (a или b) = (не a) и (не b)

В математике это выглядит так:

¬ ( a ∧ b ) = ¬ a ∨ ¬ b ¬ ( a ∨ b ) = ¬ a ∧ ¬ b <displaystyle <egin
eg <(awedge b)>=
eg vee
eg \
eg <(avee b)>=
eg wedge
eg
end
>> 000 или по-другому: 000 ( a ∧ b ) ¯ = a ¯ ∨ b ¯ ( a ∨ b ) ¯ = a ¯ ∧ b ¯ <displaystyle <egin<overline <(awedge b)>>=<overline >vee <overline >\<overline <(avee b)>>=<overline >wedge <overline >end>>

A ∩ B ¯ = A ¯ ∪ B ¯ A ∪ B ¯ = A ¯ ∩ B ¯ <displaystyle <egin<overline >=<overline >cup <overline >\<overline >=<overline >cap <overline >end>> 000 или по-другому: 000 ( A ∩ B ) C = A C ∪ B C , ( A ∪ B ) C = A C ∩ B C . <displaystyle <egin(Acap B)^=A^cup B^,\(Acup B)^=A^cap B^.end>>

Эти правила также действительны для множества элементов (семейств):

⋂ i ∈ I A i ¯ = ⋃ i ∈ I A i ¯ <displaystyle <overline <igcap _A_>>=igcup _<overline >>> 00000 и 00000 ⋃ i ∈ I A i ¯ = ⋂ i ∈ I A i ¯ <displaystyle <overline <igcup _A_>>=igcap _<overline >>> .

¬ ∀ x P ( x ) ≡ ∃ x ¬ P ( x ) , <displaystyle
eg forall x,P(x)equiv exists x,
eg P(x),> ¬ ∃ x P ( x ) ≡ ∀ x ¬ P ( x ) . <displaystyle
eg exists x,P(x)equiv forall x,
eg P(x).>

Используя законы де Моргана, можно выразить конъюнкцию через дизъюнкцию и три отрицания. Аналогично можно выразить дизъюнкцию:

a ∧ b = ¬ ( ¬ a ∨ ¬ b ) <displaystyle awedge b=
eg (
eg vee
eg )> a ∨ b = ¬ ( ¬ a ∧ ¬ b ) <displaystyle avee b=
eg (
eg wedge
eg
)>

Если существует суждение, выраженное операцией логического умножения двух или более элементов, т. е. операцией «и»: ( A ∧ B ) <displaystyle <(Awedge B)>> , то для того, чтобы найти обратное ¬ ( A ∧ B ) <displaystyle <
eg (Awedge B)>> от всего суждения, необходимо найти обратное от каждого элемента и объединить их операцией логического сложения, т. е. операцией «или»: ( ¬ A ∨ ¬ B ) <displaystyle (
eg vee
eg )> . Закон работает аналогично в обратном направлении: ¬ ( A ∨ B ) = ( ¬ A ∧ ¬ B ) <displaystyle
eg (Avee B)=(
eg wedge
eg
)> .

Применение [ править | править код ]

Законы де Моргана применяются в таких важных областях, как дискретная математика, электротехника, физика и информатика; например, используются для оптимизации цифровых схем посредством замены одних логических элементов другими.

Урок " Логические законы "

Логические законы и правила преобразования

Если логическое выражение содержит большое количество операций, то составлять для него таблицу истинности достаточно сложно, так как приходится перебирать большое количество вариантов. В таких случаях формулы удобно привести в нормальную форму.

Формула имеет нормальную форму, если в ней отсутствуют знаки эквивалентности, импликации, двойного отрицания, при этом знаки отрицания находятся только при логических переменных.

Для приведения формулы к нормальной форме используют законы логики и правила логических преобразований.

Законы логики отражают наиболее важные закономерности логического мышления. В алгебре высказываний законы логики записываются в виде формул, которые позволяют проводить эквивалентные преобразования логических выражений.

Закон тождества

Всякое высказывание тождественно самому себе.

Закон непротиворечия

Высказывание не может быть одновременно истинным и ложным. Если высказывание А истинно, то его отрицание не А должно быть ложным. Следовательно, логическое произведение высказывания и его отрицания должно быть ложно.

Закон исключенного третьего

Высказывание может быть либо истинным, либо ложным, третьего не дано. Это означает, что результат логического сложения высказывания и его отрицания всегда принимает значение «истина».

Читайте также:  Прокручивает ключ в замке в двери

Закон двойного отрицания

Если дважды отрицать некоторое высказывание, то в результате мы получим исходное высказывание.

Законы де Моргана

Важное значение для выполнения преобразований логических выражений имеют законы алгебраических преобразований. Многие из них имеют аналоги в алгебре.

(переместительный)

В обычной алгебре слагаемые и множители можно менять местами. В алгебре высказыва­ний можно менять местами логические переменные при операциях логического умножения и логического сложения.

(сочетательный)

Если в логическом выражении используются только операция логического умножения или только операция логического сложения, то можно пренебрегать скобками или произвольно их расставлять.

(А & B ) & С = А & (В & С)

(А / В) / С= А / (В / С)

(распределительный )

В отличие от обычной алгебры, где за скобки можно выносить только общие множители, в алгебре высказываний можно выносить за скобки как общие множители, так и общие слагаемые.

Закон поглощения

Ø A & (A / B) = Ø A & B

A / Ø A & B = A / B

Рассмотрим в качестве примера применения законов логики преобразование логического выражения. Пусть нам необходимо упростить логическое выражение:

Воспользуемся законом дистрибутивности и вынесем за скобки А:

(А & В) v (А & ¬ В) = А & (В v ¬ В).

По закону исключенного третьего В v В =1, следовательно:

Урок по информатике рассчитан на учащихся 10-х классов общеобразовательной школы, в учебном плане которой входит раздел «Алгебра логики». Учащимся очень нелегко дается эта тема, поэтому мне, как учителю, захотелось заинтересовать их в изучении законов логики, упрощении логических выражений и с интересом подойти к решению логических задач. В обычной форме давать уроки по этой теме нудно и хлопотно, да и ребятам не всегда понятны некоторые определения. В связи с предоставлением информационного пространства, у меня появилась возможность выкладывать свои уроки в оболочке «learning». Учащиеся, зарегистрировавшись в ней, могут в свое свободное время посещать этот курс и перечитывать то, что было непонятно на уроке. Некоторые учащиеся, пропустив уроки по болезни, наверстывают дома или в школе пропущенную тему и всегда готовы к следующему уроку. Такая форма преподавания очень устроила многих ребят и те законы, которые им были непонятны, теперь в компьютерном виде ими усваиваются гораздо легче и быстрее. Предлагаю один из таких уроков информатики, который проводится интегративно с ИКТ.

  1. Объяснение нового материала, с привлечением компьютера – 25 минут.
  2. Основные понятия и определения, выложенные в «learning» — 10 минут.
  3. Материал для любознательных – 5 минут.
  4. Домашнее задание – 5 минут.

1. Объяснение нового материала

Законы формальной логики

Наиболее простые и необходимые истинные связи между мыслями выражаются в основных законах формальной логики. Таковыми являются законы тождества, непротиворечия, исключенного третьего, достаточного основания.

Эти законы являются основными потому, что в логике они играют особо важную роль, являются наиболее общими. Они позволяют упрощать логические выражения и строить умозаключения и доказательства. Первые три из вышеперечисленных законов были выявлены и сформулированы Аристотелем, а закон достаточного основания — Г. Лейбницем.

Закон тождества: в процессе определенного рассуждения всякое понятие и суждение должны быть тождественны самим себе.

Закон непротиворечия: невозможно, чтобы одно и то оке в одно то же время было и не было присуще одному и тому же в одном и том же отношении. То есть невозможно что-либо одновременно утверждать и отрицать.

Закон исключенного третьего: из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано.

Закон достаточного основания: всякая истинная мысль должна быть достаточно обоснована.

Последний закон говорит о том, что доказательство чего-либо предполагает обоснование именно и только истинных мыслей. Ложные же мысли доказать нельзя. Есть хорошая латинская пословица: «Ошибаться свойственно всякому человеку, но настаивать на ошибке свойственно только глупцу». Формулы этого закона нет, так как он имеет только содержательный характер. В качестве аргументов для подтверждения истинной мысли могут быть использованы истинные суждения, фактический материал, статистические данные, законы науки, аксиомы, доказанные теоремы.

Читайте также:  Как задать размер страницы в ворде

Законы алгебры высказываний

Алгебра высказываний (алгебра логики) — раздел математической логики, изучающий логические операции над высказываниями и правила преобразования сложных высказываний.

При решении многих логических задач часто приходится упрощать формулы, полученные при формализации их условий. Упрощение формул в алгебре высказываний производится на основе эквивалентных преобразований, опирающихся на основные логические законы.

Законы алгебры высказываний (алгебры логики) — это тавтологии.

Иногда эти законы называются теоремами.

В алгебре высказываний логические законы выражаются в виде равенства эквивалентных формул. Среди законов особо выделяются такие, которые содержат одну переменную.

Первые четыре из приведенных ниже законов являются основными законами алгебры высказываний.

Всякое понятие и суждение тождественно самому себе.

Закон тождества означает, что в процессе рассуждения нельзя подменять одну мысль другой, одно понятие другим. При нарушении этого закона возможны логические ошибки.

Например, рассуждение Правильно говорят, что язык до Киева доведет, а я купил вчера копченый язык, значит, теперь смело могу идти в Киев неверно, так как первое и второе слова «язык» обозначают разные понятия.

В рассуждении: Движение вечно. Хождение в школу — движение. Следовательно, хождение в школу вечно слово «движение» используется в двух разных смыслах (первое — в философском смысле — как атрибут материи, второе — в обыденном смысле — как действие по перемещению в пространстве), что приводит к ложному выводу.

Не могут быть одновременно истинными суждение и его отрицание. То есть если высказывание А — истинно, то его отрицание не А должно быть ложным (и наоборот). Тогда их произведение будет всегда ложным.

Именно это равенство часто используется при упрощении сложных логических выражений.

Иногда этот закон формулируется так: два противоречащих друг другу высказывания не могут быть одновременно истинными. Примеры невыполнения закона непротиворечия:

1. На Марсе есть жизнь и на Марсе жизни нет.

2. Оля окончила среднюю школу и учится в X классе.

Закон исключенного третьего:

В один и тот же момент времени высказывание может быть либо истинным, либо ложным, третьего не дано. Истинно либо А, либо не А. Примеры выполнения закона исключенного третьего:

1. Число 12345 либо четное, либо нечетное, третьего не дано.

2. Предприятие работает убыточно или безубыточно.

3. Эта жидкость является или не является кислотой.

Закон исключенного третьего не является законом, признаваемым всеми логиками в качестве универсального закона логики. Этот закон применяется там, где познание имеет дело с жесткой ситуацией: «либо — либо», «истина—ложь». Там же, где встречается неопределенность (например, в рассуждениях о будущем), закон исключенного третьего часто не может быть применен.

Рассмотрим следующее высказывание: Это предложение ложно. Оно не может быть истинным, потому что в нем утверждается, что оно ложно. Но оно не может быть и ложным, потому что тогда оно было бы истинным. Это высказывание не истинно и не ложно, а потому нарушается закон исключенного третьего.

Парадокс (греч. paradoxos — неожиданный, странный) в этом примере возникает из-за того, что предложение ссылается само на себя. Другим известным парадоксом является задача о парикмахере: В одном городе парикмахер стрижет волосы всем жителям, кроме тех, кто стрижет себя сам. Кто стрижет волосы парикмахеру? В логике из-за ее формальности нет возможности получить форму такого ссылающегося самого на себя высказывания. Это еще раз подтверждает мысль о том, что с помощью алгебры логики нельзя выразить все возможные мысли и доводы. Покажем, как на основании определения эквивалентности высказываний могут быть получены остальные законы алгебры высказываний.

Читайте также:  Изменилось разрешение экрана что делать windows 7

Например, определим, чему эквивалентно (равносильно) А (двойное отрицание А, т. е. отрицание отрицания А). Для этого построим таблицу истинности:

По определению равносильности мы должны найти тот столбец, значения которого совпадают со значениями столбца А. Таким будет столбец А.

Таким образом, мы можем сформулировать закон двойного отрицания:

Если отрицать дважды некоторое высказывание, то в результате получается исходное высказывание. Например, высказывание А = Матроскинкот эквивалентно высказыванию А = Неверно, что Матроскин не кот.

Аналогичным образом можно вывести и проверить следующие законы:

Сколько бы раз мы ни повторяли: телевизор включен или телевизор включен или телевизор включен . значение высказывания не изменится. Аналогично от повторения на улице тепло, на улице тепло. ни на один градус теплее не станет.

Операнды А и В в операциях дизъюнкции и конъюнкции можно менять местами.

A v(B v C) = (A v B) v C;

А & (В & C) = (A & В) & С.

Если в выражении используется только операция дизъюнкции или только операция конъюнкции, то можно пренебрегать скобками или произвольно их расставлять.

A v (B & C) = (A v B) &(A v C)

(дистрибутивность дизъюнкции
относительно конъюнкции)

А & (B v C) = (A & B) v (А & C)

(дистрибутивность конъюнкции
относительно дизъюнкции)

Закон дистрибутивности конъюнкции относительно дизъюнкции ана­логичен дистрибутивному закону в алгебре, а закон дистрибутивности дизъюнкции относительно конъюнкции аналога не имеет, он справедлив только в логике. Поэтому необходимо его доказать. Доказательство удобнее всего провести с помощью таблицы истинности:

Проведите доказательство законов поглощения самостоятельно.

Словесные формулировки законов де Моргана:

Мнемоническое правило: в левой части тождества операция отрицания стоит над всем высказыванием. В правой части она как бы разрывается и отрицание стоит над каждым из простых высказываний, но одновременно меняется операция: дизъюнкция на конъюнкцию и наоборот.

Примеры выполнения закона де Моргана:

1) Высказывание Неверно, что я знаю арабский или китайский язык тождественно высказыванию Я не знаю арабского языка и не знаю китайского языка.

2) Высказывание Неверно, что я выучил урок и получил по нему двойку тождественно высказыванию Или я не выучил урок, или я не получил по нему двойку.

Замена операций импликации и эквивалентности

Операций импликации и эквивалентности иногда нет среди логических операций конкретного компьютера или транслятора с языка программирования. Однако для решения многих задач эти операции необходимы. Существуют правила замены данных операций на последовательности операций отрицания, дизъюнкции и конъюнкции.

Так, заменить операцию импликации можно в соответствии со следующим правилом:

Для замены операции эквивалентности существует два правила:

В справедливости данных формул легко убедиться, построив таблицы истинности для правой и левой частей обоих тождеств.

Знание правил замены операций импликации и эквивалентности помогает, например, правильно построить отрицание импликации.

Рассмотрим следующий пример.

Пусть дано высказывание:

Е = Неверно, что если я выиграю конкурс, то получу приз.

Пусть А = Я выиграю конкурс,

В = Я получу приз.

Отсюда, Е = Я выиграю конкурс, но приз не получу.

Интерес представляют и следующие правила:

Доказать их справедливость можно также с помощью таблиц истинности.

Интересно их выражение на естественном языке.

Если Винни-Пух съел мед, то он сыт

Если Винни-Пух не сыт, то меда он не ел.

Задание: придумайте фразы-примеры на данные правила.

2. Основные понятия и определения в Приложении 1

3. Материал для любознательных в Приложении 2

4. Домашнее задание

1) Выучить законы логики, используя курс «Алгебры логики», размещенный в информационном пространстве (www.learning.9151394.ru).

2) Проверить на ПК доказательство законов де Моргана, построив таблицу истинности.

  1. Основные понятия и определения (Приложение 1).
  2. Материал для любознательных (Приложение 2).
Ссылка на основную публикацию
Adblock detector